File size: 1,384 Bytes
0ef969b
 
 
 
9a2462e
0ef969b
 
 
 
 
9a2462e
 
0ef969b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language:
- es
- en
- multilingual
license: mit
tags:
- codeswitching
- spanish-english
- sentiment-analysis
datasets:
- lince
---

# codeswitch-spaeng-sentiment-analysis-lince
This is a pretrained model for **Sentiment Analysis** of `spanish-english` code-mixed data used from [LinCE](https://ritual.uh.edu/lince/home)

This model is trained for this below repository. 

[https://github.com/sagorbrur/codeswitch](https://github.com/sagorbrur/codeswitch)

To install codeswitch:

```
pip install codeswitch
```

## Sentiment Analysis of Spanish-English  Code-Mixed Data

* **Method-1**

```py

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-sentiment-analysis-lince")

model = AutoModelForSequenceClassification.from_pretrained("sagorsarker/codeswitch-spaeng-sentiment-analysis-lince")

nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
sentence = "El perro le ladraba a La Gatita .. .. lol #teamlagatita en las playas de Key Biscayne este Memorial day"
nlp(sentence)

```

* **Method-2**

```py
from codeswitch.codeswitch import SentimentAnalysis
sa = SentimentAnalysis('spa-eng')
sentence = "El perro le ladraba a La Gatita .. .. lol #teamlagatita en las playas de Key Biscayne este Memorial day"
result = sa.analyze(sentence)
print(result)
```