File size: 6,514 Bytes
ad5105b
 
 
 
 
 
 
315fa6f
ad5105b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b199f
ad5105b
 
81b199f
ad5105b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b199f
ad5105b
 
 
 
 
 
 
 
 
 
 
 
 
 
81b199f
 
 
 
 
ad5105b
 
 
 
 
 
 
 
 
81b199f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0631eff
 
 
d38073a
ad5105b
81b199f
ad5105b
796084d
ad5105b
 
6dc6003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5105b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c01dc3
81b199f
1c01dc3
 
 
 
 
 
 
 
 
 
 
ad5105b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
language: bn
tags:
- bert
- bengali
- bengali-lm
- bangla
license: mit
datasets:
- common_crawl
- wikipedia
- oscar
---


# Bangla BERT Base
A long way passed. Here is our **Bangla-Bert**! It is now available in huggingface model hub. 

[Bangla-Bert-Base](https://github.com/sagorbrur/bangla-bert) is a pretrained language model of Bengali language using mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and it's github [repository](https://github.com/google-research/bert)



## Pretrain Corpus Details
Corpus was downloaded from two main sources:

* Bengali commoncrawl corpus downloaded from [OSCAR](https://oscar-corpus.com/)
* [Bengali Wikipedia Dump Dataset](https://dumps.wikimedia.org/bnwiki/latest/)

After downloading these corpora, we preprocessed it as a Bert format. which is one sentence per line and an extra newline for new documents. 

```
sentence 1
sentence 2

sentence 1
sentence 2

```

## Building Vocab
We used [BNLP](https://github.com/sagorbrur/bnlp) package for training bengali sentencepiece model with vocab size 102025. We preprocess the output vocab file as Bert format.
Our final vocab file availabe at [https://github.com/sagorbrur/bangla-bert](https://github.com/sagorbrur/bangla-bert) and also at [huggingface](https://huggingface.co/sagorsarker/bangla-bert-base) model hub.

## Training Details
* Bangla-Bert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert)
* Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters)
* Total Training Steps: 1 Million
* The model was trained on a single Google Cloud TPU 

## Evaluation Results

### LM Evaluation Results
After training 1 million steps here are the evaluation results. 

```
global_step = 1000000
loss = 2.2406516
masked_lm_accuracy = 0.60641736
masked_lm_loss = 2.201459
next_sentence_accuracy = 0.98625
next_sentence_loss = 0.040997364
perplexity = numpy.exp(2.2406516) = 9.393331287442784
Loss for final step: 2.426227

```

### Downstream Task Evaluation Results
- Evaluation on Bengali Classification Benchmark Datasets

Huge Thanks to [Nick Doiron](https://twitter.com/mapmeld) for providing evaluation results of the classification task.
He used [Bengali Classification Benchmark](https://github.com/rezacsedu/Classification_Benchmarks_Benglai_NLP) datasets for the classification task.
Comparing to Nick's [Bengali electra](https://huggingface.co/monsoon-nlp/bangla-electra) and multi-lingual BERT, Bangla BERT Base achieves a state of the art result.
Here is the [evaluation script](https://github.com/sagorbrur/bangla-bert/blob/master/notebook/bangla-bert-evaluation-classification-task.ipynb).


| Model | Sentiment Analysis | Hate Speech Task | News Topic Task | Average |
| ----- | -------------------| ---------------- | --------------- | ------- |
| mBERT | 68.15 | 52.32 | 72.27 | 64.25 |
| Bengali Electra | 69.19 | 44.84 | 82.33 | 65.45 |
| Bangla BERT Base | 70.37 | 71.83 | 89.19 | 77.13 |

- Evaluation on [Wikiann](https://huggingface.co/datasets/wikiann) Datasets

We evaluated `Bangla-BERT-Base` with [Wikiann](https://huggingface.co/datasets/wikiann) Bengali NER datasets along with another benchmark three models(mBERT, XLM-R, Indic-BERT). </br>
`Bangla-BERT-Base` got a third-place where `mBERT` got first and `XML-R` got second place after training these models 5 epochs.

| Base Pre-trained Model | F1 Score | Accuracy |
| ----- | -------------------| ---------------- |
| [mBERT-uncased](https://huggingface.co/bert-base-multilingual-uncased) | 97.11 | 97.68 |
| [XLM-R](https://huggingface.co/xlm-roberta-base) | 96.22 | 97.03 |
| [Indic-BERT](https://huggingface.co/ai4bharat/indic-bert)| 92.66 | 94.74 |
| Bangla-BERT-Base | 95.57 | 97.49 |

All four model trained with [transformers-token-classification](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb) notebook.
You can find all models evaluation results [here](https://github.com/sagorbrur/bangla-bert/tree/master/evaluations/wikiann)

Also, you can check the below paper list. They used this model on their datasets.
* [DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced Bengali Language](https://arxiv.org/abs/2012.14353)
* [Emotion Classification in a Resource Constrained Language Using Transformer-based Approach](https://arxiv.org/abs/2104.08613)
* [A Review of Bangla Natural Language Processing Tasks and the Utility of Transformer Models](https://arxiv.org/abs/2107.03844)
* [BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding](https://arxiv.org/abs/2101.00204)

**NB: If you use this model for any NLP task please share evaluation results with us. We will add it here.** 

## Limitations and Biases

## How to Use

**Bangla BERT Tokenizer**

```py
from transformers import AutoTokenizer, AutoModel

bnbert_tokenizer = AutoTokenizer.from_pretrained("sagorsarker/bangla-bert-base")
text = "আমি বাংলায় গান গাই।"
bnbert_tokenizer.tokenize(text)
# ['আমি', 'বাংলা', '##য', 'গান', 'গাই', '।']
```


**MASK Generation**

You can use this model directly with a pipeline for masked language modeling:

```py
from transformers import BertForMaskedLM, BertTokenizer, pipeline

model = BertForMaskedLM.from_pretrained("sagorsarker/bangla-bert-base")
tokenizer = BertTokenizer.from_pretrained("sagorsarker/bangla-bert-base")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"আমি বাংলায় {nlp.tokenizer.mask_token} গাই।"):
  print(pred)

# {'sequence': '[CLS] আমি বাংলায গান গাই । [SEP]', 'score': 0.13404667377471924, 'token': 2552, 'token_str': 'গান'}

```

## Author
[Sagor Sarker](https://github.com/sagorbrur)

## Acknowledgements

* Thanks to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you!
* Thank to all the people around, who always helping us to build something for Bengali.

## Reference
* https://github.com/google-research/bert

## Citation
If you find this model helpful, please cite.

```
@misc{Sagor_2020,
  title   = {BanglaBERT: Bengali Mask Language Model for Bengali Language Understading},
  author  = {Sagor Sarker},
  year    = {2020},
  url    = {https://github.com/sagorbrur/bangla-bert}
}

```