saeedehj commited on
Commit
0a53687
·
1 Parent(s): 6ed5c78

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: led-base-16384-finetune-xsum
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # led-base-16384-finetune-xsum
16
+
17
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.5945
20
+ - Rouge1: 33.044
21
+ - Rouge2: 10.1279
22
+ - Rougel: 26.0726
23
+ - Rougelsum: 26.1473
24
+ - Gen Len: 19.88
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 4
45
+ - eval_batch_size: 4
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
54
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
55
+ | No log | 1.0 | 125 | 2.0340 | 33.5205 | 11.6068 | 27.034 | 27.1108 | 19.4 |
56
+ | No log | 2.0 | 250 | 2.0703 | 33.4026 | 11.5155 | 26.8554 | 26.9315 | 19.52 |
57
+ | No log | 3.0 | 375 | 2.1928 | 31.8924 | 11.2046 | 25.5199 | 25.4997 | 19.86 |
58
+ | 1.4951 | 4.0 | 500 | 2.2934 | 32.8838 | 11.2708 | 26.4849 | 26.5854 | 19.78 |
59
+ | 1.4951 | 5.0 | 625 | 2.3796 | 32.3596 | 11.1823 | 25.8718 | 25.9102 | 19.92 |
60
+ | 1.4951 | 6.0 | 750 | 2.4533 | 32.3313 | 11.008 | 25.9119 | 25.9228 | 19.89 |
61
+ | 1.4951 | 7.0 | 875 | 2.5151 | 31.6539 | 9.9426 | 25.1465 | 25.265 | 19.89 |
62
+ | 0.4719 | 8.0 | 1000 | 2.5631 | 32.2152 | 10.4829 | 25.808 | 25.9387 | 19.79 |
63
+ | 0.4719 | 9.0 | 1125 | 2.5777 | 31.8661 | 9.6903 | 25.7577 | 25.7874 | 19.89 |
64
+ | 0.4719 | 10.0 | 1250 | 2.5945 | 33.044 | 10.1279 | 26.0726 | 26.1473 | 19.88 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.30.2
70
+ - Pytorch 2.0.1+cu118
71
+ - Datasets 2.13.1
72
+ - Tokenizers 0.13.3