sachin18 commited on
Commit
0e476cd
1 Parent(s): 3a6036d

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6806
21
- - Answer: {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809}
22
- - Header: {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119}
23
- - Question: {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065}
24
- - Overall Precision: 0.7323
25
- - Overall Recall: 0.7837
26
- - Overall F1: 0.7571
27
- - Overall Accuracy: 0.8125
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.7526 | 1.0 | 10 | 1.5590 | {'precision': 0.032426778242677826, 'recall': 0.038318912237330034, 'f1': 0.03512747875354107, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23852295409181637, 'recall': 0.2244131455399061, 'f1': 0.2312530237058539, 'number': 1065} | 0.1379 | 0.1355 | 0.1367 | 0.3812 |
60
- | 1.4179 | 2.0 | 20 | 1.2477 | {'precision': 0.16770186335403728, 'recall': 0.1668726823238566, 'f1': 0.16728624535315983, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4325309992706054, 'recall': 0.5568075117370892, 'f1': 0.486863711001642, 'number': 1065} | 0.3343 | 0.3653 | 0.3491 | 0.5813 |
61
- | 1.0864 | 3.0 | 30 | 0.9440 | {'precision': 0.5470383275261324, 'recall': 0.5822002472187886, 'f1': 0.5640718562874251, 'number': 809} | {'precision': 0.0425531914893617, 'recall': 0.01680672268907563, 'f1': 0.024096385542168672, 'number': 119} | {'precision': 0.5717665615141956, 'recall': 0.6807511737089202, 'f1': 0.6215173596228033, 'number': 1065} | 0.5506 | 0.6011 | 0.5747 | 0.7225 |
62
- | 0.8353 | 4.0 | 40 | 0.7733 | {'precision': 0.5964360587002097, 'recall': 0.7033374536464772, 'f1': 0.6454906409529211, 'number': 809} | {'precision': 0.19718309859154928, 'recall': 0.11764705882352941, 'f1': 0.14736842105263157, 'number': 119} | {'precision': 0.654468085106383, 'recall': 0.7220657276995305, 'f1': 0.6866071428571429, 'number': 1065} | 0.6145 | 0.6784 | 0.6449 | 0.7634 |
63
- | 0.6716 | 5.0 | 50 | 0.7154 | {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} | {'precision': 0.24210526315789474, 'recall': 0.19327731092436976, 'f1': 0.2149532710280374, 'number': 119} | {'precision': 0.6755663430420712, 'recall': 0.784037558685446, 'f1': 0.7257714037375055, 'number': 1065} | 0.6384 | 0.7220 | 0.6777 | 0.7796 |
64
- | 0.5748 | 6.0 | 60 | 0.6924 | {'precision': 0.6378269617706237, 'recall': 0.7836835599505563, 'f1': 0.7032723239046034, 'number': 809} | {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} | {'precision': 0.7334558823529411, 'recall': 0.7492957746478873, 'f1': 0.7412912215513237, 'number': 1065} | 0.6748 | 0.7331 | 0.7027 | 0.7798 |
65
- | 0.5 | 7.0 | 70 | 0.6652 | {'precision': 0.665258711721225, 'recall': 0.7787391841779975, 'f1': 0.7175398633257404, 'number': 809} | {'precision': 0.2641509433962264, 'recall': 0.23529411764705882, 'f1': 0.24888888888888888, 'number': 119} | {'precision': 0.7253218884120172, 'recall': 0.7934272300469484, 'f1': 0.7578475336322871, 'number': 1065} | 0.6776 | 0.7541 | 0.7138 | 0.7942 |
66
- | 0.4449 | 8.0 | 80 | 0.6592 | {'precision': 0.6754201680672269, 'recall': 0.7948084054388134, 'f1': 0.730266893810335, 'number': 809} | {'precision': 0.25862068965517243, 'recall': 0.25210084033613445, 'f1': 0.25531914893617025, 'number': 119} | {'precision': 0.7574692442882249, 'recall': 0.8093896713615023, 'f1': 0.7825692237857468, 'number': 1065} | 0.6958 | 0.7702 | 0.7311 | 0.8050 |
67
- | 0.3916 | 9.0 | 90 | 0.6470 | {'precision': 0.7090301003344481, 'recall': 0.7861557478368356, 'f1': 0.7456037514654162, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.762071992976295, 'recall': 0.8150234741784037, 'f1': 0.7876588021778583, 'number': 1065} | 0.7163 | 0.7727 | 0.7434 | 0.8102 |
68
- | 0.3807 | 10.0 | 100 | 0.6552 | {'precision': 0.6869009584664537, 'recall': 0.7972805933250927, 'f1': 0.7379862700228833, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7832422586520947, 'recall': 0.8075117370892019, 'f1': 0.7951918631530283, 'number': 1065} | 0.7160 | 0.7717 | 0.7428 | 0.8129 |
69
- | 0.328 | 11.0 | 110 | 0.6710 | {'precision': 0.7014428412874584, 'recall': 0.7812113720642769, 'f1': 0.7391812865497076, 'number': 809} | {'precision': 0.3037037037037037, 'recall': 0.3445378151260504, 'f1': 0.3228346456692913, 'number': 119} | {'precision': 0.7671589921807124, 'recall': 0.8291079812206573, 'f1': 0.7969314079422383, 'number': 1065} | 0.7115 | 0.7807 | 0.7445 | 0.8076 |
70
- | 0.3111 | 12.0 | 120 | 0.6772 | {'precision': 0.6972972972972973, 'recall': 0.7972805933250927, 'f1': 0.7439446366782007, 'number': 809} | {'precision': 0.34234234234234234, 'recall': 0.31932773109243695, 'f1': 0.33043478260869563, 'number': 119} | {'precision': 0.801477377654663, 'recall': 0.8150234741784037, 'f1': 0.8081936685288641, 'number': 1065} | 0.7319 | 0.7782 | 0.7544 | 0.8120 |
71
- | 0.2936 | 13.0 | 130 | 0.6751 | {'precision': 0.7136563876651982, 'recall': 0.8009888751545118, 'f1': 0.7548048922539313, 'number': 809} | {'precision': 0.33858267716535434, 'recall': 0.36134453781512604, 'f1': 0.34959349593495936, 'number': 119} | {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065} | 0.7310 | 0.7908 | 0.7597 | 0.8126 |
72
- | 0.2719 | 14.0 | 140 | 0.6794 | {'precision': 0.7081021087680355, 'recall': 0.788627935723115, 'f1': 0.7461988304093568, 'number': 809} | {'precision': 0.3524590163934426, 'recall': 0.36134453781512604, 'f1': 0.35684647302904565, 'number': 119} | {'precision': 0.794755877034358, 'recall': 0.8253521126760563, 'f1': 0.809765085214187, 'number': 1065} | 0.7327 | 0.7827 | 0.7569 | 0.8116 |
73
- | 0.2776 | 15.0 | 150 | 0.6806 | {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809} | {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119} | {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065} | 0.7323 | 0.7837 | 0.7571 | 0.8125 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6746
21
+ - Answer: {'precision': 0.7057569296375267, 'recall': 0.8182941903584673, 'f1': 0.7578706353749285, 'number': 809}
22
+ - Header: {'precision': 0.3508771929824561, 'recall': 0.33613445378151263, 'f1': 0.34334763948497854, 'number': 119}
23
+ - Question: {'precision': 0.7793345008756567, 'recall': 0.8356807511737089, 'f1': 0.8065246941549614, 'number': 1065}
24
+ - Overall Precision: 0.7256
25
+ - Overall Recall: 0.7988
26
+ - Overall F1: 0.7604
27
+ - Overall Accuracy: 0.8085
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8024 | 1.0 | 10 | 1.6086 | {'precision': 0.009900990099009901, 'recall': 0.007416563658838072, 'f1': 0.008480565371024736, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20625, 'recall': 0.12394366197183099, 'f1': 0.15483870967741936, 'number': 1065} | 0.1108 | 0.0692 | 0.0852 | 0.3458 |
60
+ | 1.4593 | 2.0 | 20 | 1.2405 | {'precision': 0.13250283125707815, 'recall': 0.1446229913473424, 'f1': 0.13829787234042556, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42007168458781363, 'recall': 0.5502347417840375, 'f1': 0.4764227642276423, 'number': 1065} | 0.3086 | 0.3527 | 0.3292 | 0.5822 |
61
+ | 1.1064 | 3.0 | 30 | 0.9251 | {'precision': 0.46214355948869223, 'recall': 0.580964153275649, 'f1': 0.5147864184008761, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.550321199143469, 'recall': 0.723943661971831, 'f1': 0.6253041362530414, 'number': 1065} | 0.5111 | 0.6227 | 0.5614 | 0.7118 |
62
+ | 0.8548 | 4.0 | 40 | 0.7690 | {'precision': 0.5675413022351797, 'recall': 0.7218788627935723, 'f1': 0.6354733405875952, 'number': 809} | {'precision': 0.02564102564102564, 'recall': 0.008403361344537815, 'f1': 0.012658227848101267, 'number': 119} | {'precision': 0.6504534212695795, 'recall': 0.7408450704225352, 'f1': 0.6927129060579456, 'number': 1065} | 0.6024 | 0.6894 | 0.6430 | 0.7602 |
63
+ | 0.6855 | 5.0 | 50 | 0.7230 | {'precision': 0.6310572687224669, 'recall': 0.7082818294190358, 'f1': 0.6674432149097262, 'number': 809} | {'precision': 0.2054794520547945, 'recall': 0.12605042016806722, 'f1': 0.15625, 'number': 119} | {'precision': 0.6592818945760123, 'recall': 0.8103286384976526, 'f1': 0.7270429654591406, 'number': 1065} | 0.6336 | 0.7280 | 0.6776 | 0.7785 |
64
+ | 0.5838 | 6.0 | 60 | 0.6791 | {'precision': 0.6316297010607522, 'recall': 0.8096415327564895, 'f1': 0.7096424702058506, 'number': 809} | {'precision': 0.25, 'recall': 0.15126050420168066, 'f1': 0.18848167539267013, 'number': 119} | {'precision': 0.7356521739130435, 'recall': 0.7943661971830986, 'f1': 0.7638826185101579, 'number': 1065} | 0.6724 | 0.7622 | 0.7145 | 0.7886 |
65
+ | 0.499 | 7.0 | 70 | 0.6482 | {'precision': 0.6722689075630253, 'recall': 0.7911001236093943, 'f1': 0.7268597387847815, 'number': 809} | {'precision': 0.30612244897959184, 'recall': 0.25210084033613445, 'f1': 0.2764976958525346, 'number': 119} | {'precision': 0.7367972742759795, 'recall': 0.812206572769953, 'f1': 0.7726663689146941, 'number': 1065} | 0.6902 | 0.7702 | 0.7280 | 0.8001 |
66
+ | 0.4429 | 8.0 | 80 | 0.6642 | {'precision': 0.6596596596596597, 'recall': 0.8145859085290482, 'f1': 0.7289823008849557, 'number': 809} | {'precision': 0.26605504587155965, 'recall': 0.24369747899159663, 'f1': 0.2543859649122807, 'number': 119} | {'precision': 0.7445193929173693, 'recall': 0.8291079812206573, 'f1': 0.7845402043536206, 'number': 1065} | 0.6848 | 0.7883 | 0.7329 | 0.7998 |
67
+ | 0.387 | 9.0 | 90 | 0.6536 | {'precision': 0.6892177589852009, 'recall': 0.8059332509270705, 'f1': 0.743019943019943, 'number': 809} | {'precision': 0.3269230769230769, 'recall': 0.2857142857142857, 'f1': 0.30493273542600896, 'number': 119} | {'precision': 0.757912745936698, 'recall': 0.831924882629108, 'f1': 0.7931960608773501, 'number': 1065} | 0.7084 | 0.7888 | 0.7464 | 0.8018 |
68
+ | 0.3798 | 10.0 | 100 | 0.6564 | {'precision': 0.6893305439330544, 'recall': 0.8145859085290482, 'f1': 0.746742209631728, 'number': 809} | {'precision': 0.3055555555555556, 'recall': 0.2773109243697479, 'f1': 0.2907488986784141, 'number': 119} | {'precision': 0.7616580310880829, 'recall': 0.828169014084507, 'f1': 0.7935222672064778, 'number': 1065} | 0.7084 | 0.7898 | 0.7469 | 0.8132 |
69
+ | 0.3185 | 11.0 | 110 | 0.6684 | {'precision': 0.690700104493208, 'recall': 0.8170580964153276, 'f1': 0.7485843714609287, 'number': 809} | {'precision': 0.3230769230769231, 'recall': 0.35294117647058826, 'f1': 0.3373493975903615, 'number': 119} | {'precision': 0.761168384879725, 'recall': 0.831924882629108, 'f1': 0.7949753252579633, 'number': 1065} | 0.7059 | 0.7973 | 0.7488 | 0.8018 |
70
+ | 0.3035 | 12.0 | 120 | 0.6603 | {'precision': 0.69989281886388, 'recall': 0.8071693448702101, 'f1': 0.7497129735935705, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7688966116420504, 'recall': 0.8309859154929577, 'f1': 0.7987364620938627, 'number': 1065} | 0.7173 | 0.7908 | 0.7523 | 0.8129 |
71
+ | 0.2848 | 13.0 | 130 | 0.6748 | {'precision': 0.695697796432319, 'recall': 0.8195302843016069, 'f1': 0.7525539160045404, 'number': 809} | {'precision': 0.3474576271186441, 'recall': 0.3445378151260504, 'f1': 0.3459915611814346, 'number': 119} | {'precision': 0.7705061082024433, 'recall': 0.8291079812206573, 'f1': 0.798733604703754, 'number': 1065} | 0.7158 | 0.7963 | 0.7539 | 0.8063 |
72
+ | 0.2628 | 14.0 | 140 | 0.6744 | {'precision': 0.7089151450053706, 'recall': 0.8158220024721878, 'f1': 0.7586206896551725, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.35294117647058826, 'f1': 0.35593220338983056, 'number': 119} | {'precision': 0.7739965095986039, 'recall': 0.8328638497652582, 'f1': 0.8023518769787427, 'number': 1065} | 0.7242 | 0.7973 | 0.7590 | 0.8092 |
73
+ | 0.262 | 15.0 | 150 | 0.6746 | {'precision': 0.7057569296375267, 'recall': 0.8182941903584673, 'f1': 0.7578706353749285, 'number': 809} | {'precision': 0.3508771929824561, 'recall': 0.33613445378151263, 'f1': 0.34334763948497854, 'number': 119} | {'precision': 0.7793345008756567, 'recall': 0.8356807511737089, 'f1': 0.8065246941549614, 'number': 1065} | 0.7256 | 0.7988 | 0.7604 | 0.8085 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1717253895.280ef54c6982.10819.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d6d3b65a739fd27f82f75b45bbd3e3143c0cfb3de01df0b278f9fffc76610e2c
3
- size 14200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7335ee80eebb25728c36d8651ad826d06e2868cc074b7947b0f2e677ce706932
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9b98f0053d65e399db4183f49d29d68692f648e5c6ca15ca190211a1f15e3881
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4dde7581b58ccb4ac3a9a94c0abcbec8a60831ec927863f75c883da6e947c28
3
  size 450558212