saattrupdan
commited on
Commit
·
f7588be
1
Parent(s):
496f7f3
update model card README.md
Browse files
README.md
CHANGED
@@ -1,97 +1,40 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
language:
|
4 |
-
- am
|
5 |
-
- ar
|
6 |
-
- hy
|
7 |
-
- eu
|
8 |
-
- bn
|
9 |
-
- bs
|
10 |
-
- bg
|
11 |
-
- my
|
12 |
-
- hr
|
13 |
-
- ca
|
14 |
-
- cs
|
15 |
-
- da
|
16 |
-
- nl
|
17 |
-
- en
|
18 |
-
- et
|
19 |
-
- fi
|
20 |
-
- fr
|
21 |
-
- ka
|
22 |
-
- de
|
23 |
-
- el
|
24 |
-
- gu
|
25 |
-
- ht
|
26 |
-
- iw
|
27 |
-
- hi
|
28 |
-
- hu
|
29 |
-
- is
|
30 |
-
- in
|
31 |
-
- it
|
32 |
-
- ja
|
33 |
-
- kn
|
34 |
-
- km
|
35 |
-
- ko
|
36 |
-
- lo
|
37 |
-
- lv
|
38 |
-
- lt
|
39 |
-
- ml
|
40 |
-
- mr
|
41 |
-
- ne
|
42 |
-
- no
|
43 |
-
- or
|
44 |
-
- pa
|
45 |
-
- ps
|
46 |
-
- fa
|
47 |
-
- pl
|
48 |
-
- pt
|
49 |
-
- ro
|
50 |
-
- ru
|
51 |
-
- sr
|
52 |
-
- zh
|
53 |
-
- sd
|
54 |
-
- si
|
55 |
-
- sk
|
56 |
-
- sl
|
57 |
-
- es
|
58 |
-
- sv
|
59 |
-
- tl
|
60 |
-
- ta
|
61 |
-
- te
|
62 |
-
- th
|
63 |
-
- tr
|
64 |
-
- uk
|
65 |
-
- ur
|
66 |
-
- ug
|
67 |
-
- vi
|
68 |
-
- cy
|
69 |
tags:
|
70 |
- generated_from_trainer
|
71 |
model-index:
|
72 |
-
- name: verdict-classifier
|
73 |
-
results:
|
74 |
-
- task:
|
75 |
-
type: text-classification
|
76 |
-
name: Verdict Classification
|
77 |
-
widget:
|
78 |
-
- "One might think that this is true, but it's taken out of context."
|
79 |
---
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
It achieves the following results on the evaluation set, being 1,000 such verdicts, but here including duplicates to represent the true distribution:
|
85 |
-
- Loss: 0.2245
|
86 |
-
- F1 Macro: 0.8818
|
87 |
-
- F1 Misinformation: 0.9842
|
88 |
-
- F1 Factual: 0.9688
|
89 |
-
- F1 Other: 0.6923
|
90 |
-
- Prec Macro: 0.8668
|
91 |
-
- Prec Misinformation: 0.9887
|
92 |
-
- Prec Factual: 0.9688
|
93 |
-
- Prec Other: 0.6429
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
## Training procedure
|
97 |
|
@@ -106,59 +49,24 @@ The following hyperparameters were used during training:
|
|
106 |
- total_train_batch_size: 32
|
107 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
108 |
- lr_scheduler_type: linear
|
109 |
-
- lr_scheduler_warmup_steps:
|
110 |
- num_epochs: 1000
|
111 |
|
112 |
### Training results
|
113 |
|
114 |
-
| Training Loss | Epoch | Step
|
115 |
-
|
116 |
-
| 1.
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
127 |
-
| 0.3991 | 1.6 | 6000 | 0.1671 | 0.8131 | 0.9705 | 0.9355 | 0.5333 | 0.7976 | 0.9816 | 0.9667 | 0.4444 |
|
128 |
-
| 0.344 | 1.73 | 6500 | 0.1719 | 0.7989 | 0.9749 | 0.8955 | 0.5263 | 0.7667 | 0.9885 | 0.8571 | 0.4545 |
|
129 |
-
| 0.3005 | 1.86 | 7000 | 0.1855 | 0.8052 | 0.9704 | 0.9206 | 0.5246 | 0.7839 | 0.9838 | 0.9355 | 0.4324 |
|
130 |
-
| 0.2638 | 2.0 | 7500 | 0.1802 | 0.7896 | 0.9752 | 0.9231 | 0.4706 | 0.7777 | 0.9796 | 0.9091 | 0.4444 |
|
131 |
-
| 0.2362 | 2.13 | 8000 | 0.1752 | 0.7762 | 0.9718 | 0.8986 | 0.4583 | 0.7578 | 0.9773 | 0.8378 | 0.4583 |
|
132 |
-
| 0.2077 | 2.26 | 8500 | 0.1739 | 0.8101 | 0.9740 | 0.9206 | 0.5357 | 0.7953 | 0.9817 | 0.9355 | 0.4688 |
|
133 |
-
| 0.1858 | 2.39 | 9000 | 0.1986 | 0.8073 | 0.9716 | 0.9412 | 0.5091 | 0.7748 | 0.9839 | 0.8889 | 0.4516 |
|
134 |
-
| 0.1755 | 2.53 | 9500 | 0.1945 | 0.7872 | 0.9754 | 0.9180 | 0.4681 | 0.8049 | 0.9710 | 0.9655 | 0.4783 |
|
135 |
-
| 0.1591 | 2.66 | 10000 | 0.2366 | 0.7880 | 0.9692 | 0.8857 | 0.5091 | 0.7504 | 0.9838 | 0.8158 | 0.4516 |
|
136 |
-
| 0.1457 | 2.79 | 10500 | 0.2346 | 0.7614 | 0.9671 | 0.8857 | 0.4314 | 0.7334 | 0.9771 | 0.8158 | 0.4074 |
|
137 |
-
| 0.1376 | 2.93 | 11000 | 0.2361 | 0.8015 | 0.9729 | 0.9118 | 0.52 | 0.7802 | 0.9795 | 0.8611 | 0.5 |
|
138 |
-
| 0.126 | 3.06 | 11500 | 0.2276 | 0.8331 | 0.9751 | 0.9688 | 0.5556 | 0.8168 | 0.9818 | 0.9688 | 0.5 |
|
139 |
-
| 0.1133 | 3.19 | 12000 | 0.2972 | 0.8014 | 0.9727 | 0.9231 | 0.5085 | 0.7746 | 0.9861 | 0.9091 | 0.4286 |
|
140 |
-
| 0.1114 | 3.33 | 12500 | 0.2600 | 0.8038 | 0.9705 | 0.8955 | 0.5455 | 0.7742 | 0.9816 | 0.8571 | 0.4839 |
|
141 |
-
| 0.1099 | 3.46 | 13000 | 0.3221 | 0.8273 | 0.9738 | 0.9118 | 0.5965 | 0.7882 | 0.9884 | 0.8611 | 0.5152 |
|
142 |
-
| 0.1116 | 3.59 | 13500 | 0.2277 | 0.8376 | 0.9775 | 0.9231 | 0.6122 | 0.8296 | 0.9797 | 0.9091 | 0.6 |
|
143 |
-
| 0.106 | 3.73 | 14000 | 0.2347 | 0.8148 | 0.9774 | 0.8955 | 0.5714 | 0.7997 | 0.9819 | 0.8571 | 0.56 |
|
144 |
-
| 0.098 | 3.86 | 14500 | 0.2337 | 0.8487 | 0.9775 | 0.9688 | 0.6 | 0.8418 | 0.9797 | 0.9688 | 0.5769 |
|
145 |
-
| 0.0899 | 3.99 | 15000 | 0.2072 | 0.8636 | 0.9820 | 0.9688 | 0.64 | 0.8561 | 0.9842 | 0.9688 | 0.6154 |
|
146 |
-
| 0.0855 | 4.12 | 15500 | 0.2385 | 0.8409 | 0.9762 | 0.9538 | 0.5926 | 0.8189 | 0.9840 | 0.9394 | 0.5333 |
|
147 |
-
| 0.0864 | 4.26 | 16000 | 0.2780 | 0.8462 | 0.9774 | 0.9688 | 0.5926 | 0.8287 | 0.9841 | 0.9688 | 0.5333 |
|
148 |
-
| 0.0784 | 4.39 | 16500 | 0.2668 | 0.8277 | 0.9776 | 0.9524 | 0.5532 | 0.8361 | 0.9754 | 0.9677 | 0.5652 |
|
149 |
-
| 0.0923 | 4.52 | 17000 | 0.2893 | 0.8399 | 0.9738 | 0.9254 | 0.6207 | 0.8012 | 0.9884 | 0.8857 | 0.5294 |
|
150 |
-
| 0.0794 | 4.66 | 17500 | 0.3101 | 0.8556 | 0.9773 | 0.9688 | 0.6207 | 0.8289 | 0.9885 | 0.9688 | 0.5294 |
|
151 |
-
| 0.082 | 4.79 | 18000 | 0.2245 | 0.8818 | 0.9842 | 0.9688 | 0.6923 | 0.8668 | 0.9887 | 0.9688 | 0.6429 |
|
152 |
-
| 0.084 | 4.92 | 18500 | 0.2771 | 0.8247 | 0.9797 | 0.8986 | 0.5957 | 0.8102 | 0.9841 | 0.8378 | 0.6087 |
|
153 |
-
| 0.0757 | 5.06 | 19000 | 0.2971 | 0.8594 | 0.9773 | 0.9677 | 0.6333 | 0.8388 | 0.9885 | 1.0 | 0.5278 |
|
154 |
-
| 0.0709 | 5.19 | 19500 | 0.3601 | 0.8410 | 0.9774 | 0.9688 | 0.5769 | 0.8288 | 0.9819 | 0.9688 | 0.5357 |
|
155 |
-
| 0.0698 | 5.32 | 20000 | 0.2772 | 0.8333 | 0.9762 | 0.9524 | 0.5714 | 0.8173 | 0.9840 | 0.9677 | 0.5 |
|
156 |
-
| 0.0652 | 5.45 | 20500 | 0.3397 | 0.8186 | 0.9752 | 0.9524 | 0.5283 | 0.8100 | 0.9796 | 0.9677 | 0.4828 |
|
157 |
-
| 0.0735 | 5.59 | 21000 | 0.3027 | 0.8412 | 0.9785 | 0.9524 | 0.5926 | 0.8284 | 0.9841 | 0.9677 | 0.5333 |
|
158 |
-
| 0.0746 | 5.72 | 21500 | 0.3122 | 0.8384 | 0.9751 | 0.9688 | 0.5714 | 0.8176 | 0.9840 | 0.9688 | 0.5 |
|
159 |
-
| 0.0714 | 5.85 | 22000 | 0.2683 | 0.8381 | 0.9787 | 0.9524 | 0.5833 | 0.8429 | 0.9776 | 0.9677 | 0.5833 |
|
160 |
-
| 0.073 | 5.99 | 22500 | 0.2436 | 0.8676 | 0.9786 | 0.9841 | 0.64 | 0.8650 | 0.9797 | 1.0 | 0.6154 |
|
161 |
-
| 0.0653 | 6.12 | 23000 | 0.3380 | 0.8559 | 0.9761 | 0.9688 | 0.6230 | 0.8243 | 0.9907 | 0.9688 | 0.5135 |
|
162 |
|
163 |
|
164 |
### Framework versions
|
@@ -166,4 +74,4 @@ The following hyperparameters were used during training:
|
|
166 |
- Transformers 4.11.3
|
167 |
- Pytorch 1.9.0+cu102
|
168 |
- Datasets 1.9.0
|
169 |
-
- Tokenizers 0.10.2
|
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
+
- name: verdict-classifier
|
7 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
# verdict-classifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.1573
|
18 |
+
- F1 Macro: 0.0550
|
19 |
+
- F1 Misinformation: 0.0
|
20 |
+
- F1 Factual: 0.1650
|
21 |
+
- F1 Other: 0.0
|
22 |
+
- Prec Macro: 0.0300
|
23 |
+
- Prec Misinformation: 0.0
|
24 |
+
- Prec Factual: 0.0899
|
25 |
+
- Prec Other: 0.0
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
|
39 |
## Training procedure
|
40 |
|
|
|
49 |
- total_train_batch_size: 32
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 162525
|
53 |
- num_epochs: 1000
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
59 |
+
| 1.2021 | 0.0 | 50 | 1.1573 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
60 |
+
| 1.1948 | 0.0 | 100 | 1.1569 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
61 |
+
| 1.1968 | 0.01 | 150 | 1.1563 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
62 |
+
| 1.1925 | 0.01 | 200 | 1.1554 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
63 |
+
| 1.2055 | 0.01 | 250 | 1.1544 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
64 |
+
| 1.1927 | 0.01 | 300 | 1.1531 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
65 |
+
| 1.1923 | 0.02 | 350 | 1.1515 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
66 |
+
| 1.1929 | 0.02 | 400 | 1.1496 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
67 |
+
| 1.1924 | 0.02 | 450 | 1.1476 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
68 |
+
| 1.1862 | 0.02 | 500 | 1.1454 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
69 |
+
| 1.1781 | 0.03 | 550 | 1.1432 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
74 |
- Transformers 4.11.3
|
75 |
- Pytorch 1.9.0+cu102
|
76 |
- Datasets 1.9.0
|
77 |
+
- Tokenizers 0.10.2
|