File size: 5,346 Bytes
36c50e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: test_os_counties
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test_os_counties

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the rwood-97/os_counties dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8997
- Mean Iou: 0.1075
- Mean Accuracy: 0.4992
- Overall Accuracy: 0.2118
- Accuracy Non-map: 0.9899
- Accuracy Map: 0.0084
- Iou Non-map: 0.2065
- Iou Map: 0.0084

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Non-map | Accuracy Map | Iou Non-map | Iou Map |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:------------:|:-----------:|:-------:|
| 0.4081        | 0.41  | 20   | 0.8267          | 0.2101   | 0.4981        | 0.3478           | 0.7548           | 0.2414       | 0.1934      | 0.2268  |
| 0.3939        | 0.82  | 40   | 0.8190          | 0.2387   | 0.4978        | 0.3898           | 0.6821           | 0.3134       | 0.1881      | 0.2894  |
| 0.3319        | 1.22  | 60   | 0.9487          | 0.1579   | 0.4976        | 0.2759           | 0.8762           | 0.1191       | 0.2005      | 0.1153  |
| 0.3234        | 1.63  | 80   | 0.9275          | 0.1847   | 0.4974        | 0.3120           | 0.8138           | 0.1809       | 0.1969      | 0.1725  |
| 0.3932        | 2.04  | 100  | 0.9053          | 0.1892   | 0.4974        | 0.3183           | 0.8031           | 0.1916       | 0.1962      | 0.1822  |
| 0.3412        | 2.45  | 120  | 0.8265          | 0.2385   | 0.4973        | 0.3895           | 0.6814           | 0.3132       | 0.1878      | 0.2891  |
| 0.2976        | 2.86  | 140  | 1.3713          | 0.1127   | 0.4987        | 0.2182           | 0.9778           | 0.0197       | 0.2058      | 0.0195  |
| 0.2803        | 3.27  | 160  | 1.6436          | 0.1095   | 0.4993        | 0.2143           | 0.9860           | 0.0126       | 0.2064      | 0.0125  |
| 0.3686        | 3.67  | 180  | 1.2379          | 0.1221   | 0.4982        | 0.2298           | 0.9564           | 0.0399       | 0.2047      | 0.0395  |
| 0.3434        | 4.08  | 200  | 1.1857          | 0.1385   | 0.4978        | 0.2507           | 0.9197           | 0.0758       | 0.2028      | 0.0743  |
| 0.2951        | 4.49  | 220  | 1.3947          | 0.1160   | 0.4986        | 0.2223           | 0.9704           | 0.0268       | 0.2054      | 0.0266  |
| 0.2333        | 4.9   | 240  | 1.5480          | 0.1170   | 0.4988        | 0.2236           | 0.9687           | 0.0288       | 0.2054      | 0.0286  |
| 0.2491        | 5.31  | 260  | 1.6563          | 0.1136   | 0.4990        | 0.2194           | 0.9764           | 0.0215       | 0.2058      | 0.0214  |
| 0.2706        | 5.71  | 280  | 1.9766          | 0.1058   | 0.4995        | 0.2098           | 0.9942           | 0.0048       | 0.2068      | 0.0048  |
| 0.2171        | 6.12  | 300  | 1.6191          | 0.1117   | 0.4989        | 0.2170           | 0.9804           | 0.0175       | 0.2060      | 0.0174  |
| 0.2352        | 6.53  | 320  | 1.8075          | 0.1102   | 0.4992        | 0.2151           | 0.9842           | 0.0141       | 0.2062      | 0.0141  |
| 0.2953        | 6.94  | 340  | 1.4709          | 0.1178   | 0.4986        | 0.2245           | 0.9667           | 0.0305       | 0.2053      | 0.0303  |
| 0.2799        | 7.35  | 360  | 1.3843          | 0.1300   | 0.4982        | 0.2399           | 0.9392           | 0.0571       | 0.2038      | 0.0562  |
| 0.2285        | 7.76  | 380  | 1.7799          | 0.1101   | 0.4991        | 0.2150           | 0.9842           | 0.0140       | 0.2062      | 0.0139  |
| 0.3461        | 8.16  | 400  | 1.7282          | 0.1106   | 0.4989        | 0.2157           | 0.9826           | 0.0153       | 0.2061      | 0.0152  |
| 0.1867        | 8.57  | 420  | 2.3356          | 0.1042   | 0.4997        | 0.2079           | 0.9981           | 0.0014       | 0.2070      | 0.0014  |
| 0.1731        | 8.98  | 440  | 2.1465          | 0.1050   | 0.4996        | 0.2089           | 0.9959           | 0.0032       | 0.2069      | 0.0032  |
| 0.224         | 9.39  | 460  | 2.3467          | 0.1047   | 0.4996        | 0.2084           | 0.9969           | 0.0024       | 0.2070      | 0.0024  |
| 0.2199        | 9.8   | 480  | 1.8997          | 0.1075   | 0.4992        | 0.2118           | 0.9899           | 0.0084       | 0.2065      | 0.0084  |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.5
- Tokenizers 0.14.1