{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x796090468790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796090468820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7960904688b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796090468940>", "_build": "<function ActorCriticPolicy._build at 0x7960904689d0>", "forward": "<function ActorCriticPolicy.forward at 0x796090468a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x796090468af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796090468b80>", "_predict": "<function ActorCriticPolicy._predict at 0x796090468c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796090468ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796090468d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x796090468dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796090d6f700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709081702183387886, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALpMPT7bfqy86yLFucxJyzjythe+/p0uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/pVFH8TBaMAWyUTR8BjAF0lEdAmcH6dDpkgHV9lChoBkdAcSyvnr6ciGgHTcwBaAhHQJnFsvIwM6R1fZQoaAZHQHDhWmk30f5oB0vyaAhHQJnG/GHYYix1fZQoaAZHQHBa/JiiItVoB00PAWgIR0CZyHAskIHDdX2UKGgGR0Bi6pCIDYAbaAdN6ANoCEdAmc70ug6EJ3V9lChoBkdAbKaQf6oES2gHTQIDaAhHQJnUS83++/R1fZQoaAZHQHDq/F3pwCNoB0v/aAhHQJnWCY3Ns311fZQoaAZHQHBBljmSyMVoB0vjaAhHQJnXjMfRu0l1fZQoaAZHQHFN9i6QNkRoB00iAWgIR0CZ20YSQHRkdX2UKGgGR0Bvf/bVSXMRaAdNQwFoCEdAmd0EFr2xp3V9lChoBkdAb5iEIPbwjWgHTWsCaAhHQJnhb+PzWf91fZQoaAZHQHEHqEzwc5toB00rAWgIR0CZ4wTCLuQZdX2UKGgGR0Bzy1AkcCHRaAdNDwFoCEdAmeR+IAOrhnV9lChoBkdAcl82SdOIqWgHTRYBaAhHQJnl/kGRmsh1fZQoaAZHQHJNxsQ/X5FoB01GAWgIR0CZ6OEzwc5sdX2UKGgGR0BGI2OyVv/BaAdLumgIR0CZ6d5oGpuNdX2UKGgGR0Byde0E5hjOaAdNQgFoCEdAmeuYQjD8+HV9lChoBkdAczu3dKujh2gHTYMBaAhHQJnu57u2JBR1fZQoaAZHQHDId/FzdUNoB00IAWgIR0CZ8FVMmF8HdX2UKGgGR0BzApiQT238aAdN6QFoCEdAmfLsGxD9fnV9lChoBkdAb9+n3ta6jGgHS/NoCEdAmfVe/k/8mHV9lChoBkdAb1CIO6NEPWgHTQ8BaAhHQJn20ZFXq7l1fZQoaAZHQEa7HiFTNt9oB0uyaAhHQJn3v4ubqhV1fZQoaAZHQHG5m+9Jz1doB00QAWgIR0CZ+ToP07KadX2UKGgGR0BxUPv9cbBHaAdNZwFoCEdAmfxAH3UQTXV9lChoBkdAchk/YJ3PiWgHS/NoCEdAmf2NRBNVR3V9lChoBkdAcbGELYwqRWgHTW4BaAhHQJn/fO5avA51fZQoaAZHQHFq/4mCyyFoB00OAWgIR0CaAgIhhYvGdX2UKGgGR0BvXz+5vtMPaAdL6mgIR0CaAz9gnc+JdX2UKGgGR0Bwae6K+BYnaAdNDgFoCEdAmgUx0ZFXrHV9lChoBkdAcFJTJyQxOGgHS9JoCEdAmgaTrzGxU3V9lChoBkdAZtqax5cC5mgHTegDaAhHQJoOM/FBIFx1fZQoaAZHQHHdaa5PM0RoB00gAmgIR0CaEkpvP1L8dX2UKGgGR0Bi0R3X7LuAaAdN6ANoCEdAmhjp84Pwu3V9lChoBkdAcuWZpSJj2GgHTSwBaAhHQJoag4uK4x11fZQoaAZHQHAG1ZxJd0JoB0vYaAhHQJobqCiAUcp1fZQoaAZHQG5qD+717IFoB0viaAhHQJoc2eYlY2d1fZQoaAZHQG+9b/ffoA5oB0v8aAhHQJofUaNuLrJ1fZQoaAZHQGC9hZQpF1BoB03oA2gIR0CaJdfGuLaVdX2UKGgGR0BzdlKK508vaAdL2GgIR0CaJwLV4HHFdX2UKGgGR0Bxlvspobn6aAdNGANoCEdAmixe8kD6nHV9lChoBkdAbXmK77Kq42gHTRQBaAhHQJot2cslLOB1fZQoaAZHQG/DXXI2fkFoB009AWgIR0CaL43CKrJbdX2UKGgGR0BzIHMxGlQ/aAdNSAFoCEdAmjJsqrilznV9lChoBkdAcgl/FR51NmgHTakBaAhHQJo1XTx5LRN1fZQoaAZHQG9PNI9TxXpoB0vmaAhHQJo3Aosqaw51fZQoaAZHQHJ2nf/FR51oB005A2gIR0CaPZQHRkVfdX2UKGgGR0BxsMNUfgaWaAdNEQFoCEdAmj8bXlKbrnV9lChoBkdAcLherMkhR2gHTbsDaAhHQJpFg7FKkEd1fZQoaAZHQG8DKBVdX1doB0v8aAhHQJpG58rqdH51fZQoaAZHQG3192xIJ7doB00cAWgIR0CaSZJK8L8adX2UKGgGR0BuU8c81XNkaAdNCwFoCEdAmksEzsQd0nV9lChoBkdAbtxMotthu2gHS+loCEdAmkxAUYbbUXV9lChoBkdAcSaQ2uPmxWgHTRMBaAhHQJpNs3Ov+wV1fZQoaAZHQHJZqfvnbItoB00jAWgIR0CaUG8IRh+fdX2UKGgGR0BuEuL5ylvZaAdL9WgIR0CaUborWiDedX2UKGgGR0BwdCR1X/5taAdL8mgIR0CaUw5qM3qBdX2UKGgGR0Bx4JbiZOSGaAdNLAFoCEdAmlXD5sTFl3V9lChoBkdAcL9ol2NedGgHTZUBaAhHQJpX9MURFql1fZQoaAZHQHH88ox59mZoB0v4aAhHQJpZVSsKb8Z1fZQoaAZHQG6T7UwztTloB00sAWgIR0CaWwSIgvDhdX2UKGgGR0BuMtAJLM9saAdNEgFoCEdAml2T+rELpnV9lChoBkdAcyDo5PuXu2gHTRoBaAhHQJpfGzmfXf91fZQoaAZHQEnXbdrO7g9oB0u0aAhHQJpgD9XLeRB1fZQoaAZHQGgRY95hScdoB03oA2gIR0CaaGbHZK4AdX2UKGgGR0ByGDv3JxNqaAdNJgFoCEdAmmpKekHlfnV9lChoBkdAbo/WMju8b2gHS+9oCEdAmmy4CuEEknV9lChoBkdAcNriDdxhlWgHS+JoCEdAmm3jcVQAMnV9lChoBkdAQcboGIKtxWgHS5hoCEdAmm61IRRMvnV9lChoBkdAcqfbvw3HaWgHTSIBaAhHQJpwSIP9UCJ1fZQoaAZHQHAZXRG+bmVoB0vxaAhHQJpytqi48U51fZQoaAZHQHDkwF1SwW5oB00HAWgIR0CadCQ0oBq9dX2UKGgGR0BwiCNfgJkYaAdL+2gIR0CadXh3qzJIdX2UKGgGR0BwA4z1schlaAdL72gIR0CadsyvLX+VdX2UKGgGR0BxlB9b5dnkaAdLzGgIR0CaeQTzundgdX2UKGgGR0BztK3fAKv3aAdL1WgIR0CaeiQZn+Q2dX2UKGgGR0BvdDm+0w8GaAdL8mgIR0Cae3M3ZPEbdX2UKGgGR0BxECPsAvL6aAdNOQNoCEdAmoLvfbblBHV9lChoBkdAcMNeyRjjJmgHS7xoCEdAmoP3Jgb6xnV9lChoBkdAbiD4cm0E5mgHS9doCEdAmoUoYWLxZ3V9lChoBkdAb4vuy/sVtWgHS9doCEdAmoZPUBnzx3V9lChoBkdAbx+wfyPMjmgHS85oCEdAmoiSy+pOvnV9lChoBkdAcXVKZUkv9WgHTfYBaAhHQJqLTpbD/ER1fZQoaAZHQHB/DOPeYUpoB00NAWgIR0CajMHymQ8wdX2UKGgGR0Bi+jwvxpcpaAdN6ANoCEdAmpPqMefZmXV9lChoBkdAcCaOZssQNGgHS/9oCEdAmpc0PtlZo3V9lChoBkdARZ3uTibUgGgHS7xoCEdAmpicDSw4bXV9lChoBkdAcOUPCVKPGWgHS85oCEdAmpm14X40uXV9lChoBkdAN15VCHARCmgHS75oCEdAmpq65CngpHV9lChoBkdAcmC7GNrCWWgHTQUBaAhHQJqcIKx9oex1fZQoaAZHQHII8pkPMB9oB02CAWgIR0Can1q6e5FxdX2UKGgGR0BxY+ieumrKaAdNDgFoCEdAmqDQO8TSLXV9lChoBkdAcKOdZq20A2gHS/doCEdAmqIeL74zrXV9lChoBkdAcoqfwqiGnGgHS/FoCEdAmqNke2d/a3V9lChoBkdAcECYraufVmgHS9doCEdAmqWa4YrJ83V9lChoBkdAcSCmdy1eB2gHTSYBaAhHQJqnJA7gbZR1fZQoaAZHQHMGLdWQwK1oB0v1aAhHQJqobsNUfgd1fZQoaAZHQHAN5soDxLFoB0viaAhHQJqpo93bEgp1fZQoaAZHQE1VP5YYBNpoB0uvaAhHQJqrq67NB4V1fZQoaAZHQHH+mbwz+FVoB0vxaAhHQJqs8qVhTfl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |