File size: 3,262 Bytes
c02be22
 
 
2161ae5
c02be22
 
 
 
 
 
 
cfb59eb
c02be22
 
944c3a5
c02be22
944c3a5
2161ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e2418
2161ae5
 
 
 
 
 
 
 
 
 
 
944c3a5
2161ae5
 
 
 
 
 
 
 
6af5ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161ae5
 
 
6af5ebe
2161ae5
6af5ebe
 
 
2161ae5
 
 
32e2418
2161ae5
 
 
 
 
 
 
 
c02be22
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
language:
- en
- it
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---

# Meta LLaMA 3.1 8B 4-bit Finetuned Model

This model is a fine-tuned version of `Meta-Llama-3.1-8B`, developed by **ruslanmv** for text generation tasks. It leverages 4-bit quantization, making it more efficient for inference while maintaining strong performance in natural language generation.

---

## Model Details

- **Base Model**: `unsloth/meta-llama-3.1-8b-bnb-4bit`
- **Finetuned by**: ruslanmv
- **Language**: English
- **License**: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
- **Tags**: 
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
  - sft

---

## Model Usage

### Installation

To use this model, you will need to install the necessary libraries:

```bash
pip install transformers accelerate 
```

### Loading the Model in Python

Here’s an example of how to load this fine-tuned model using Hugging Face's `transformers` library:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model and tokenizer
model_name = "ruslanmv/Meta-Llama-3.1-8B-Text-to-SQL"

# Ensure you have the right device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the model and tokenizer from the Hugging Face Hub
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize the tokenizer (adjust the model name as needed)
# Define EOS token for terminating the sequences
EOS_TOKEN = tokenizer.eos_token

# Define Alpaca-style prompt template
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
"""

# Format the prompt without the response part
prompt = alpaca_prompt.format(
    "Provide the SQL query",
    "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020"
)
# Tokenize the prompt and generate text
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)

# Decode the generated text
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]

# Extract the generated response only (remove the prompt part)
response_start = generated_text.find("### Response:") + len("### Response:\n")
response = generated_text[response_start:].strip()

# Print the response (excluding the prompt)
print(response)



```
and the answer is 

```
SELECT * FROM table1 WHERE anni = 2020
```
### Model Features

- **Text Generation**: This model is fine-tuned to generate coherent and contextually accurate text based on the provided input. 


### License

This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). You are free to use, modify, and distribute this model, provided that you comply with the license terms.

### Acknowledgments

This model was fine-tuned by **ruslanmv** based on the original work of `unsloth` and the `meta-llama-3.1-8b-bnb-4bit` model.