PEFT
Safetensors
ruslanmv commited on
Commit
767b092
·
verified ·
1 Parent(s): 089dc39

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -10
README.md CHANGED
@@ -18,31 +18,64 @@ The Medical-Mixtral-7B-v1.5k is a fine-tuned Mixtral model for answering medical
18
 
19
  ### Model Sources [optional]
20
 
 
 
21
  ## How to Get Started with the Model
22
 
 
 
 
 
 
 
23
  Use the code below to get started with the model.
24
 
25
  ```python
26
- from transformers import AutoModelForCausalLM, AutoTokenizer
 
27
 
28
  # Define the name of your fine-tuned model
29
  finetuned_model = 'ruslanmv/Medical-Mixtral-7B-v1.5k'
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  # Load tokenizer
32
  tokenizer = AutoTokenizer.from_pretrained(finetuned_model, trust_remote_code=True)
33
 
34
- # Load the model with the provided adapter configuration and weights
35
- model_pretrained = AutoModelForCausalLM.from_pretrained(finetuned_model, trust_remote_code=True, torch_dtype=torch.float16)
 
 
 
 
 
 
 
 
 
36
 
37
- messages = [
38
- {'role': 'user', 'content': 'What should I do to reduce my weight gained due to genetic hypothyroidism?'},
39
- {'role': 'assistant', 'content': ''},
40
- ]
41
 
42
- input_ids = tokenizer.apply_chat_template(messages, return_tensors='pt').to('cuda')
 
43
 
44
- outputs = model_pretrained.generate(input_ids, max_new_tokens=500)
45
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
46
  ```
47
 
48
 
 
18
 
19
  ### Model Sources [optional]
20
 
21
+
22
+
23
  ## How to Get Started with the Model
24
 
25
+ Installation
26
+
27
+ ```
28
+ pip install -qU transformers==4.36.2 datasets python-dotenv peft bitsandbytes accelerate
29
+ ```
30
+
31
  Use the code below to get started with the model.
32
 
33
  ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging, BitsAndBytesConfig
35
+ import os, torch
36
 
37
  # Define the name of your fine-tuned model
38
  finetuned_model = 'ruslanmv/Medical-Mixtral-7B-v1.5k'
39
 
40
+ # Load fine-tuned model
41
+ bnb_config = BitsAndBytesConfig(
42
+ load_in_4bit=True,
43
+ bnb_4bit_quant_type="nf4",
44
+ bnb_4bit_compute_dtype=torch.bfloat16,
45
+ bnb_4bit_use_double_quant=False,
46
+ )
47
+ model_pretrained = AutoModelForCausalLM.from_pretrained(
48
+ finetuned_model,
49
+ load_in_4bit=True,
50
+ quantization_config=bnb_config,
51
+ torch_dtype=torch.bfloat16,
52
+ device_map="auto",
53
+ trust_remote_code=True
54
+ )
55
+
56
  # Load tokenizer
57
  tokenizer = AutoTokenizer.from_pretrained(finetuned_model, trust_remote_code=True)
58
 
59
+ # Set pad_token_id to eos_token_id
60
+ model_pretrained.config.pad_token_id = tokenizer.eos_token_id
61
+
62
+ pipe = pipeline(task="text-generation", model=model_pretrained, tokenizer=tokenizer, max_length=100)
63
+
64
+ def build_prompt(question):
65
+ prompt=f"[INST]@Enlighten. {question} [/INST]"
66
+ return prompt
67
+
68
+ question = "What does abutment of the nerve root mean?"
69
+ prompt = build_prompt(question)
70
 
71
+ # Generate text based on the prompt
72
+ result = pipe(prompt)[0]
73
+ generated_text = result['generated_text']
 
74
 
75
+ # Remove the prompt from the generated text
76
+ generated_text = generated_text.replace(prompt, "", 1).strip()
77
 
78
+ print(generated_text)
 
79
  ```
80
 
81