File size: 1,747 Bytes
7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 26308f3 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 31369d9 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
library_name: peft
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
datasets:
- ruslanmv/ai-medical-chatbot
---
# Model Card for Medical-Mixtral-7B-v1.5k
[![](future.jpg)](https://ruslanmv.com/)
### Model Description
The Medical-Mixtral-7B-v1.5k is a fine-tuned Mixtral model for answering medical assistance questions. This model is a novel version of mistralai/Mixtral-8x7B-Instruct-v0.1, adapted to a subset of 1.5k records from the AI Medical Chatbot dataset, which contains 250k records. The purpose of this model is to provide a ready chatbot to answer questions related to medical assistance.
### Model Sources [optional]
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Define the name of your fine-tuned model
finetuned_model = 'ruslanmv/Medical-Mixtral-7B-v1.5k'
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(finetuned_model, trust_remote_code=True)
# Load the model with the provided adapter configuration and weights
model_pretrained = AutoModelForCausalLM.from_pretrained(finetuned_model, trust_remote_code=True, torch_dtype=torch.float16)
messages = [
{'role': 'user', 'content': 'What should I do to reduce my weight gained due to genetic hypothyroidism?'},
{'role': 'assistant', 'content': ''},
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors='pt').to('cuda')
outputs = model_pretrained.generate(input_ids, max_new_tokens=500)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Framework versions
- PEFT 0.10.0
Please fill in the missing parts with the relevant information for your model. Let me know if you need further assistance! |