File size: 8,054 Bytes
b248799
7ee5a28
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2c299
 
 
 
 
 
 
 
b248799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee5a28
b248799
 
 
 
00969a9
 
7ee5a28
 
 
 
 
 
 
 
 
 
 
 
 
 
00969a9
 
b248799
 
7ee5a28
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---

library_name: transformers
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5924
- Answer: {'precision': 0.8748538011695907, 'recall': 0.9155446756425949, 'f1': 0.8947368421052633, 'number': 817}
- Header: {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119}
- Question: {'precision': 0.8945487042001787, 'recall': 0.9294336118848654, 'f1': 0.9116575591985429, 'number': 1077}
- Overall Precision: 0.8742
- Overall Recall: 0.9006
- Overall F1: 0.8872
- Overall Accuracy: 0.8193

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.3657        | 10.5263  | 200  | 0.9521          | {'precision': 0.8126361655773421, 'recall': 0.9130966952264382, 'f1': 0.859942363112392, 'number': 817}  | {'precision': 0.5252525252525253, 'recall': 0.4369747899159664, 'f1': 0.47706422018348627, 'number': 119} | {'precision': 0.8796046720575023, 'recall': 0.9090064995357474, 'f1': 0.8940639269406392, 'number': 1077} | 0.8343            | 0.8828         | 0.8578     | 0.8059           |
| 0.0448        | 21.0526  | 400  | 1.2063          | {'precision': 0.8845686512758202, 'recall': 0.8910648714810282, 'f1': 0.8878048780487805, 'number': 817} | {'precision': 0.5034965034965035, 'recall': 0.6050420168067226, 'f1': 0.549618320610687, 'number': 119}   | {'precision': 0.8940092165898618, 'recall': 0.9006499535747446, 'f1': 0.8973172987974098, 'number': 1077} | 0.8630            | 0.8793         | 0.8711     | 0.8133           |
| 0.0135        | 31.5789  | 600  | 1.3466          | {'precision': 0.8726190476190476, 'recall': 0.8971848225214198, 'f1': 0.8847314423657212, 'number': 817} | {'precision': 0.4900662251655629, 'recall': 0.6218487394957983, 'f1': 0.5481481481481482, 'number': 119}  | {'precision': 0.8789808917197452, 'recall': 0.8969359331476323, 'f1': 0.8878676470588236, 'number': 1077} | 0.8483            | 0.8808         | 0.8642     | 0.8083           |
| 0.0069        | 42.1053  | 800  | 1.3562          | {'precision': 0.8235294117647058, 'recall': 0.9082007343941249, 'f1': 0.8637951105937136, 'number': 817} | {'precision': 0.6413043478260869, 'recall': 0.4957983193277311, 'f1': 0.5592417061611374, 'number': 119}  | {'precision': 0.8723981900452489, 'recall': 0.8950789229340761, 'f1': 0.8835930339138405, 'number': 1077} | 0.8413            | 0.8768         | 0.8587     | 0.8063           |
| 0.0058        | 52.6316  | 1000 | 1.4131          | {'precision': 0.8688524590163934, 'recall': 0.9082007343941249, 'f1': 0.8880909634949131, 'number': 817} | {'precision': 0.6310679611650486, 'recall': 0.5462184873949579, 'f1': 0.5855855855855856, 'number': 119}  | {'precision': 0.8767605633802817, 'recall': 0.924791086350975, 'f1': 0.9001355625847266, 'number': 1077}  | 0.8614            | 0.8957         | 0.8782     | 0.8110           |
| 0.0034        | 63.1579  | 1200 | 1.4398          | {'precision': 0.867699642431466, 'recall': 0.8910648714810282, 'f1': 0.8792270531400967, 'number': 817}  | {'precision': 0.6288659793814433, 'recall': 0.5126050420168067, 'f1': 0.5648148148148148, 'number': 119}  | {'precision': 0.8971533516988063, 'recall': 0.9071494893221913, 'f1': 0.9021237303785781, 'number': 1077} | 0.8721            | 0.8773         | 0.8747     | 0.8054           |
| 0.0016        | 73.6842  | 1400 | 1.6692          | {'precision': 0.8520231213872832, 'recall': 0.9020807833537332, 'f1': 0.8763376932223542, 'number': 817} | {'precision': 0.6039603960396039, 'recall': 0.5126050420168067, 'f1': 0.5545454545454545, 'number': 119}  | {'precision': 0.9039923954372624, 'recall': 0.883008356545961, 'f1': 0.8933771723813998, 'number': 1077}  | 0.8667            | 0.8689         | 0.8678     | 0.7919           |
| 0.001         | 84.2105  | 1600 | 1.6412          | {'precision': 0.846927374301676, 'recall': 0.9277845777233782, 'f1': 0.8855140186915887, 'number': 817}  | {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119}  | {'precision': 0.8877828054298642, 'recall': 0.9108635097493036, 'f1': 0.8991750687442712, 'number': 1077} | 0.8565            | 0.8957         | 0.8757     | 0.7982           |
| 0.0006        | 94.7368  | 1800 | 1.5924          | {'precision': 0.8748538011695907, 'recall': 0.9155446756425949, 'f1': 0.8947368421052633, 'number': 817} | {'precision': 0.64, 'recall': 0.5378151260504201, 'f1': 0.5844748858447488, 'number': 119}                | {'precision': 0.8945487042001787, 'recall': 0.9294336118848654, 'f1': 0.9116575591985429, 'number': 1077} | 0.8742            | 0.9006         | 0.8872     | 0.8193           |
| 0.0004        | 105.2632 | 2000 | 1.5639          | {'precision': 0.8710433763188745, 'recall': 0.9094247246022031, 'f1': 0.8898203592814371, 'number': 817} | {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119}   | {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} | 0.8708            | 0.8937         | 0.8821     | 0.8218           |
| 0.0002        | 115.7895 | 2200 | 1.5740          | {'precision': 0.8684516880093132, 'recall': 0.9130966952264382, 'f1': 0.8902147971360381, 'number': 817} | {'precision': 0.65, 'recall': 0.5462184873949579, 'f1': 0.593607305936073, 'number': 119}                 | {'precision': 0.8928247048138056, 'recall': 0.9127205199628597, 'f1': 0.9026629935720845, 'number': 1077} | 0.8709            | 0.8912         | 0.8809     | 0.8162           |
| 0.0002        | 126.3158 | 2400 | 1.5739          | {'precision': 0.8710433763188745, 'recall': 0.9094247246022031, 'f1': 0.8898203592814371, 'number': 817} | {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119}  | {'precision': 0.8975521305530372, 'recall': 0.9192200557103064, 'f1': 0.9082568807339448, 'number': 1077} | 0.8736            | 0.8927         | 0.8830     | 0.8177           |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0