ruescog commited on
Commit
083140f
·
1 Parent(s): 494198f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.10 +/- 24.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff38198e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff38198ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff38198f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff3819d040>", "_build": "<function ActorCriticPolicy._build at 0x7eff3819d0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff3819d160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff3819d1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff3819d280>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff3819d310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff3819d3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff3819d430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff3819d4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff381956c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677486377267668841, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT+DvPGny8RcN3vAw3ET1GSNg9wP7jvQAAgD8AAIA/M31tvSkcUrqqL3y65tCENAfddrtVc5A5AACAPwAAgD/NCIu8HwXmtzq7ebrNURe2LTbQO/YKljkAAIA/AACAP1pY9L0pJgm8hqs3PrdYqb0Kvge9yDmhvgAAgD8AAIA/QPGUPfbEMror2bo70zUaOGo0f7q45Ja2AACAPwAAgD+tAxa+bM/cu5P9zLyZnxO7lBY4PU6r+DsAAIA/AACAPw0qoL1CGZM/+se8vsQKHL/iGIW9QwvnvQAAAAAAAAAAGq45vVy7OLqSSRI4XLOUsg+BV7t2oim3AACAPwAAgD/N5GI8w8FhuiVuVjulP6a2PnyJu9Z+droAAIA/AACAPzOrD7zDoUu6MyXQOwHivzeTsas6OkoBNgAAgD8AAIA/5s7TvfdpxT5ieyE+7zN5vqhsmLwaPgA+AAAAAAAAAAAz6+079tQ9ur1AOzvNaDO0u84qOqYSVboAAIA/AACAPxo9aT32vH+6QlPFutdzF7Y8NlW7wtvjOQAAgD8AAIA/ZqZxvVwHProW/ze69YKGtVu++jpS7VE5AACAPwAAgD8N9pC9w/lBuv+kArr2+hC2f/3gOuJbFTkAAIA/AACAP4CoIr1Io4+65Tw1OtwXLzXU6LC6a0pSuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ZleYiwhZkCUhpRSlIwBbJRN6AOMAXSUR0CRn7371qWUdX2UKGgGaAloD0MI1ouhnGh8ZUCUhpRSlGgVTegDaBZHQJGi9rTH80l1fZQoaAZoCWgPQwjutaD3RkljQJSGlFKUaBVN6ANoFkdAkaVim/FirnV9lChoBmgJaA9DCMUe2scKImJAlIaUUpRoFU3oA2gWR0CRp7uNgjQidX2UKGgGaAloD0MIaOp1i0DyYECUhpRSlGgVTegDaBZHQJGqCFM7EHd1fZQoaAZoCWgPQwiGV5I8151hQJSGlFKUaBVN6ANoFkdAkavX5WRzR3V9lChoBmgJaA9DCO2A64qZS2ZAlIaUUpRoFU3oA2gWR0CRrKNBWxQjdX2UKGgGaAloD0MIAaH18GVHYUCUhpRSlGgVTegDaBZHQJGu/YywfQt1fZQoaAZoCWgPQwjHLebnhq5nQJSGlFKUaBVN6ANoFkdAkbQnAuZkTnV9lChoBmgJaA9DCPPJiuFqHGJAlIaUUpRoFU3oA2gWR0CRuquiN83NdX2UKGgGaAloD0MI+PwwQviEaECUhpRSlGgVTegDaBZHQJHBmn4wh4d1fZQoaAZoCWgPQwhA+bt31DBeQJSGlFKUaBVN6ANoFkdAkdzuPq9oOHV9lChoBmgJaA9DCBzPZ0C9TWZAlIaUUpRoFU3oA2gWR0CR3j8c+7lJdX2UKGgGaAloD0MIGF+0xwvOYkCUhpRSlGgVTegDaBZHQJHfip3os7N1fZQoaAZoCWgPQwjtYS8UsOxjQJSGlFKUaBVN6ANoFkdAkeHjlgc94nV9lChoBmgJaA9DCLdhFASPjx/AlIaUUpRoFUvAaBZHQJHtFlRP4211fZQoaAZoCWgPQwi9NbBVgvNCQJSGlFKUaBVL4WgWR0CR8HnXNC7cdX2UKGgGaAloD0MIhuP5DKglYUCUhpRSlGgVTegDaBZHQJH1Gk1uR9x1fZQoaAZoCWgPQwhXzt4ZbcpgQJSGlFKUaBVN6ANoFkdAkfaZGWldknV9lChoBmgJaA9DCNLfS+HB3WJAlIaUUpRoFU3oA2gWR0CR+LcKgIyCdX2UKGgGaAloD0MIdnCwNzHxZECUhpRSlGgVTegDaBZHQJH6VxbSqlx1fZQoaAZoCWgPQwi+E7NeDKdfQJSGlFKUaBVN6ANoFkdAkfvr4vexfXV9lChoBmgJaA9DCJ7Q60/i92JAlIaUUpRoFU3oA2gWR0CR/YiRGMGYdX2UKGgGaAloD0MIblD7rR2bZUCUhpRSlGgVTegDaBZHQJH/GhbnoxJ1fZQoaAZoCWgPQwjPMSB7PXNgQJSGlFKUaBVN6ANoFkdAkf/Oi35N5HV9lChoBmgJaA9DCNvBiH2CNWRAlIaUUpRoFU3oA2gWR0CSAdq9GqgidX2UKGgGaAloD0MIzas6q4W9ZUCUhpRSlGgVTegDaBZHQJIHINLDhtN1fZQoaAZoCWgPQwi5wyYyc4tJQJSGlFKUaBVLqGgWR0CSCV0bcXWOdX2UKGgGaAloD0MIqmBUUieIQECUhpRSlGgVS8FoFkdAkgos8TzunnV9lChoBmgJaA9DCK9fsBu2r2VAlIaUUpRoFU3oA2gWR0CSDl0lJHy3dX2UKGgGaAloD0MIOzquRnapMECUhpRSlGgVS7NoFkdAkhTipR4yGnV9lChoBmgJaA9DCILK+PcZA2VAlIaUUpRoFU3oA2gWR0CSFVS4OMESdX2UKGgGaAloD0MI4xdeSXJ1ZUCUhpRSlGgVTegDaBZHQJI2VsXSBsh1fZQoaAZoCWgPQwiXdf9YiKFhQJSGlFKUaBVN6ANoFkdAkjp8clw97nV9lChoBmgJaA9DCC8X8Z2YyV5AlIaUUpRoFU3oA2gWR0CSQ5faHsTndX2UKGgGaAloD0MIjiCVYsdCYkCUhpRSlGgVTegDaBZHQJJG4DRtxdZ1fZQoaAZoCWgPQwhaEqCmFuFhQJSGlFKUaBVN6ANoFkdAkktJKnNxEXV9lChoBmgJaA9DCN+I7lnXkWhAlIaUUpRoFU3oA2gWR0CSTMc2zfJndX2UKGgGaAloD0MISDKrd7iPZUCUhpRSlGgVTegDaBZHQJJPHRSgoPV1fZQoaAZoCWgPQwiCOuXRjepoQJSGlFKUaBVN6ANoFkdAklDd8E3bVXV9lChoBmgJaA9DCCLfpdQlCWBAlIaUUpRoFU3oA2gWR0CSUuqW1MM7dX2UKGgGaAloD0MILH3ognoSZkCUhpRSlGgVTegDaBZHQJJVPKeTV2B1fZQoaAZoCWgPQwhvhEVFHOVlQJSGlFKUaBVN6ANoFkdAklsev+wTunV9lChoBmgJaA9DCJ+u7lhs3WRAlIaUUpRoFU3oA2gWR0CSYyywwCbMdX2UKGgGaAloD0MI8BmJ0AifZUCUhpRSlGgVTegDaBZHQJJm0J7b+Lp1fZQoaAZoCWgPQwhtVRLZh85gQJSGlFKUaBVN6ANoFkdAkmy/jOs1bnV9lChoBmgJaA9DCHuhgO1g9mRAlIaUUpRoFU3oA2gWR0CSc8UxEfDDdX2UKGgGaAloD0MI6X+5Fq1qYECUhpRSlGgVTegDaBZHQJJ0MU8FINF1fZQoaAZoCWgPQwjhtUsbjilpQJSGlFKUaBVN6ANoFkdAknsZDRc/uHV9lChoBmgJaA9DCIQroFDPc2RAlIaUUpRoFU3oA2gWR0CSlbyKNyYHdX2UKGgGaAloD0MIf4eiQB+eYECUhpRSlGgVTegDaBZHQJKkKQA+6iF1fZQoaAZoCWgPQwg+JefEHm5HQJSGlFKUaBVL12gWR0CSpLw5vLowdX2UKGgGaAloD0MIvyfWqXLlZECUhpRSlGgVTegDaBZHQJKoqYfGMn91fZQoaAZoCWgPQwjz4sRXO6tkQJSGlFKUaBVN6ANoFkdAkq8Huy/sV3V9lChoBmgJaA9DCApoImz4w2JAlIaUUpRoFU3oA2gWR0CSsP8gIQe4dX2UKGgGaAloD0MIxEFClC/paECUhpRSlGgVTegDaBZHQJK0Enc+JP91fZQoaAZoCWgPQwimK9hGPAFHQJSGlFKUaBVLumgWR0CStDpoK2KEdX2UKGgGaAloD0MIWHA/4AGgYUCUhpRSlGgVTegDaBZHQJK1w3T/hl11fZQoaAZoCWgPQwg3ABsQocdiQJSGlFKUaBVN6ANoFkdAkrcy8rZrYXV9lChoBmgJaA9DCBzqd2HrAmRAlIaUUpRoFU3oA2gWR0CSuJQq7ROUdX2UKGgGaAloD0MICYofY+7JZUCUhpRSlGgVTegDaBZHQJK8IB3iaRZ1fZQoaAZoCWgPQwivBb03BmdoQJSGlFKUaBVN6ANoFkdAksCnoTwlSnV9lChoBmgJaA9DCA6ki02rV2VAlIaUUpRoFU3oA2gWR0CSwsTTOPeYdX2UKGgGaAloD0MIwHlx4isGZECUhpRSlGgVTegDaBZHQJLHdZ0Syt51fZQoaAZoCWgPQwjTUKOQ5NtlQJSGlFKUaBVN6ANoFkdAks24Er5IpnV9lChoBmgJaA9DCFvR5jg3w2BAlIaUUpRoFU3oA2gWR0CSzjnCO3lTdX2UKGgGaAloD0MIyY/4FWvWRUCUhpRSlGgVS8xoFkdAktN1U6xPf3V9lChoBmgJaA9DCD9Tr1uEnWJAlIaUUpRoFU3oA2gWR0CS8vLt/nW8dX2UKGgGaAloD0MI0VeQZqzKZECUhpRSlGgVTegDaBZHQJL8vC/Glyl1fZQoaAZoCWgPQwgRqz/CMANkQJSGlFKUaBVN6ANoFkdAkv+VEAo5P3V9lChoBmgJaA9DCAGFevoIxmBAlIaUUpRoFU3oA2gWR0CTBCBHTZxrdX2UKGgGaAloD0MInplgOFfaaECUhpRSlGgVTegDaBZHQJMFlul41P51fZQoaAZoCWgPQwi1/pYAfJpiQJSGlFKUaBVN6ANoFkdAkwfDVMEidXV9lChoBmgJaA9DCDV5ymo6umVAlIaUUpRoFU3oA2gWR0CTB+46Oo5xdX2UKGgGaAloD0MILudSXFWpZkCUhpRSlGgVTegDaBZHQJMJeoVEd/91fZQoaAZoCWgPQwjlY3eBkothQJSGlFKUaBVN6ANoFkdAkwsIe5nUUnV9lChoBmgJaA9DCJdxUwPNC2JAlIaUUpRoFU3oA2gWR0CTDKE7nxJ/dX2UKGgGaAloD0MIE5z6QHKcYECUhpRSlGgVTegDaBZHQJMQncbiqAB1fZQoaAZoCWgPQwiAnDBhtJBiQJSGlFKUaBVN6ANoFkdAkxWsKkVN6HV9lChoBmgJaA9DCF2j5UAPImZAlIaUUpRoFU3oA2gWR0CTGL10T101dX2UKGgGaAloD0MI2o8UkeFuZECUhpRSlGgVTegDaBZHQJMrUsoUi6h1fZQoaAZoCWgPQwjQDU3Z6TNjQJSGlFKUaBVN6ANoFkdAkyvJCWu5jHV9lChoBmgJaA9DCAdBR6va2WRAlIaUUpRoFU3oA2gWR0CTMcfG+9J0dX2UKGgGaAloD0MIQukLIWd1ZECUhpRSlGgVTegDaBZHQJNLrbEgntx1fZQoaAZoCWgPQwioxks3Cc1kQJSGlFKUaBVN6ANoFkdAk1eAJb+tKnV9lChoBmgJaA9DCFLy6hwDrV9AlIaUUpRoFU3oA2gWR0CTW47TUiIMdX2UKGgGaAloD0MIe90iMNYuY0CUhpRSlGgVTegDaBZHQJNiWXC0ngJ1fZQoaAZoCWgPQwh1BHCzeLNhQJSGlFKUaBVN6ANoFkdAk2STBRAKOXV9lChoBmgJaA9DCGx55XrbT2NAlIaUUpRoFU3oA2gWR0CTZ8r3Cbc5dX2UKGgGaAloD0MII6DCESQHaUCUhpRSlGgVTegDaBZHQJNn+GDcuap1fZQoaAZoCWgPQwg/GePDbEhmQJSGlFKUaBVN6ANoFkdAk2lQg5imVXV9lChoBmgJaA9DCPoNEw1SNGNAlIaUUpRoFU3oA2gWR0CTarmoBJZodX2UKGgGaAloD0MIzF8hc2XcZUCUhpRSlGgVTegDaBZHQJNsKgam4y51fZQoaAZoCWgPQwhzS6sh8dVkQJSGlFKUaBVN6ANoFkdAk2/JaiblR3V9lChoBmgJaA9DCLGmsihs2WNAlIaUUpRoFU3oA2gWR0CTdLBl+VkddX2UKGgGaAloD0MITTEHQcf2YUCUhpRSlGgVTegDaBZHQJN3DakAPup1fZQoaAZoCWgPQwgydVd2QW5hQJSGlFKUaBVN6ANoFkdAk4NkY8+zMXV9lChoBmgJaA9DCMfUXdkFCWVAlIaUUpRoFU3oA2gWR0CTg9eyAxzrdX2UKGgGaAloD0MINo/DYP4+ZUCUhpRSlGgVTegDaBZHQJOJYUg0TDh1fZQoaAZoCWgPQwjLLa2GxDpkQJSGlFKUaBVN6ANoFkdAk471Ed/8VHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95d255f167d52d4de687e51facae35bdcb7c433ed34de800dad9429abc64a8c3
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff38198e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff38198ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff38198f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff3819d040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff3819d0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff3819d160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff3819d1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff3819d280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff3819d310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff3819d3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff3819d430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff3819d4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7eff381956c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677486377267668841,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT+DvPGny8RcN3vAw3ET1GSNg9wP7jvQAAgD8AAIA/M31tvSkcUrqqL3y65tCENAfddrtVc5A5AACAPwAAgD/NCIu8HwXmtzq7ebrNURe2LTbQO/YKljkAAIA/AACAP1pY9L0pJgm8hqs3PrdYqb0Kvge9yDmhvgAAgD8AAIA/QPGUPfbEMror2bo70zUaOGo0f7q45Ja2AACAPwAAgD+tAxa+bM/cu5P9zLyZnxO7lBY4PU6r+DsAAIA/AACAPw0qoL1CGZM/+se8vsQKHL/iGIW9QwvnvQAAAAAAAAAAGq45vVy7OLqSSRI4XLOUsg+BV7t2oim3AACAPwAAgD/N5GI8w8FhuiVuVjulP6a2PnyJu9Z+droAAIA/AACAPzOrD7zDoUu6MyXQOwHivzeTsas6OkoBNgAAgD8AAIA/5s7TvfdpxT5ieyE+7zN5vqhsmLwaPgA+AAAAAAAAAAAz6+079tQ9ur1AOzvNaDO0u84qOqYSVboAAIA/AACAPxo9aT32vH+6QlPFutdzF7Y8NlW7wtvjOQAAgD8AAIA/ZqZxvVwHProW/ze69YKGtVu++jpS7VE5AACAPwAAgD8N9pC9w/lBuv+kArr2+hC2f/3gOuJbFTkAAIA/AACAP4CoIr1Io4+65Tw1OtwXLzXU6LC6a0pSuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ZleYiwhZkCUhpRSlIwBbJRN6AOMAXSUR0CRn7371qWUdX2UKGgGaAloD0MI1ouhnGh8ZUCUhpRSlGgVTegDaBZHQJGi9rTH80l1fZQoaAZoCWgPQwjutaD3RkljQJSGlFKUaBVN6ANoFkdAkaVim/FirnV9lChoBmgJaA9DCMUe2scKImJAlIaUUpRoFU3oA2gWR0CRp7uNgjQidX2UKGgGaAloD0MIaOp1i0DyYECUhpRSlGgVTegDaBZHQJGqCFM7EHd1fZQoaAZoCWgPQwiGV5I8151hQJSGlFKUaBVN6ANoFkdAkavX5WRzR3V9lChoBmgJaA9DCO2A64qZS2ZAlIaUUpRoFU3oA2gWR0CRrKNBWxQjdX2UKGgGaAloD0MIAaH18GVHYUCUhpRSlGgVTegDaBZHQJGu/YywfQt1fZQoaAZoCWgPQwjHLebnhq5nQJSGlFKUaBVN6ANoFkdAkbQnAuZkTnV9lChoBmgJaA9DCPPJiuFqHGJAlIaUUpRoFU3oA2gWR0CRuquiN83NdX2UKGgGaAloD0MI+PwwQviEaECUhpRSlGgVTegDaBZHQJHBmn4wh4d1fZQoaAZoCWgPQwhA+bt31DBeQJSGlFKUaBVN6ANoFkdAkdzuPq9oOHV9lChoBmgJaA9DCBzPZ0C9TWZAlIaUUpRoFU3oA2gWR0CR3j8c+7lJdX2UKGgGaAloD0MIGF+0xwvOYkCUhpRSlGgVTegDaBZHQJHfip3os7N1fZQoaAZoCWgPQwjtYS8UsOxjQJSGlFKUaBVN6ANoFkdAkeHjlgc94nV9lChoBmgJaA9DCLdhFASPjx/AlIaUUpRoFUvAaBZHQJHtFlRP4211fZQoaAZoCWgPQwi9NbBVgvNCQJSGlFKUaBVL4WgWR0CR8HnXNC7cdX2UKGgGaAloD0MIhuP5DKglYUCUhpRSlGgVTegDaBZHQJH1Gk1uR9x1fZQoaAZoCWgPQwhXzt4ZbcpgQJSGlFKUaBVN6ANoFkdAkfaZGWldknV9lChoBmgJaA9DCNLfS+HB3WJAlIaUUpRoFU3oA2gWR0CR+LcKgIyCdX2UKGgGaAloD0MIdnCwNzHxZECUhpRSlGgVTegDaBZHQJH6VxbSqlx1fZQoaAZoCWgPQwi+E7NeDKdfQJSGlFKUaBVN6ANoFkdAkfvr4vexfXV9lChoBmgJaA9DCJ7Q60/i92JAlIaUUpRoFU3oA2gWR0CR/YiRGMGYdX2UKGgGaAloD0MIblD7rR2bZUCUhpRSlGgVTegDaBZHQJH/GhbnoxJ1fZQoaAZoCWgPQwjPMSB7PXNgQJSGlFKUaBVN6ANoFkdAkf/Oi35N5HV9lChoBmgJaA9DCNvBiH2CNWRAlIaUUpRoFU3oA2gWR0CSAdq9GqgidX2UKGgGaAloD0MIzas6q4W9ZUCUhpRSlGgVTegDaBZHQJIHINLDhtN1fZQoaAZoCWgPQwi5wyYyc4tJQJSGlFKUaBVLqGgWR0CSCV0bcXWOdX2UKGgGaAloD0MIqmBUUieIQECUhpRSlGgVS8FoFkdAkgos8TzunnV9lChoBmgJaA9DCK9fsBu2r2VAlIaUUpRoFU3oA2gWR0CSDl0lJHy3dX2UKGgGaAloD0MIOzquRnapMECUhpRSlGgVS7NoFkdAkhTipR4yGnV9lChoBmgJaA9DCILK+PcZA2VAlIaUUpRoFU3oA2gWR0CSFVS4OMESdX2UKGgGaAloD0MI4xdeSXJ1ZUCUhpRSlGgVTegDaBZHQJI2VsXSBsh1fZQoaAZoCWgPQwiXdf9YiKFhQJSGlFKUaBVN6ANoFkdAkjp8clw97nV9lChoBmgJaA9DCC8X8Z2YyV5AlIaUUpRoFU3oA2gWR0CSQ5faHsTndX2UKGgGaAloD0MIjiCVYsdCYkCUhpRSlGgVTegDaBZHQJJG4DRtxdZ1fZQoaAZoCWgPQwhaEqCmFuFhQJSGlFKUaBVN6ANoFkdAkktJKnNxEXV9lChoBmgJaA9DCN+I7lnXkWhAlIaUUpRoFU3oA2gWR0CSTMc2zfJndX2UKGgGaAloD0MISDKrd7iPZUCUhpRSlGgVTegDaBZHQJJPHRSgoPV1fZQoaAZoCWgPQwiCOuXRjepoQJSGlFKUaBVN6ANoFkdAklDd8E3bVXV9lChoBmgJaA9DCCLfpdQlCWBAlIaUUpRoFU3oA2gWR0CSUuqW1MM7dX2UKGgGaAloD0MILH3ognoSZkCUhpRSlGgVTegDaBZHQJJVPKeTV2B1fZQoaAZoCWgPQwhvhEVFHOVlQJSGlFKUaBVN6ANoFkdAklsev+wTunV9lChoBmgJaA9DCJ+u7lhs3WRAlIaUUpRoFU3oA2gWR0CSYyywwCbMdX2UKGgGaAloD0MI8BmJ0AifZUCUhpRSlGgVTegDaBZHQJJm0J7b+Lp1fZQoaAZoCWgPQwhtVRLZh85gQJSGlFKUaBVN6ANoFkdAkmy/jOs1bnV9lChoBmgJaA9DCHuhgO1g9mRAlIaUUpRoFU3oA2gWR0CSc8UxEfDDdX2UKGgGaAloD0MI6X+5Fq1qYECUhpRSlGgVTegDaBZHQJJ0MU8FINF1fZQoaAZoCWgPQwjhtUsbjilpQJSGlFKUaBVN6ANoFkdAknsZDRc/uHV9lChoBmgJaA9DCIQroFDPc2RAlIaUUpRoFU3oA2gWR0CSlbyKNyYHdX2UKGgGaAloD0MIf4eiQB+eYECUhpRSlGgVTegDaBZHQJKkKQA+6iF1fZQoaAZoCWgPQwg+JefEHm5HQJSGlFKUaBVL12gWR0CSpLw5vLowdX2UKGgGaAloD0MIvyfWqXLlZECUhpRSlGgVTegDaBZHQJKoqYfGMn91fZQoaAZoCWgPQwjz4sRXO6tkQJSGlFKUaBVN6ANoFkdAkq8Huy/sV3V9lChoBmgJaA9DCApoImz4w2JAlIaUUpRoFU3oA2gWR0CSsP8gIQe4dX2UKGgGaAloD0MIxEFClC/paECUhpRSlGgVTegDaBZHQJK0Enc+JP91fZQoaAZoCWgPQwimK9hGPAFHQJSGlFKUaBVLumgWR0CStDpoK2KEdX2UKGgGaAloD0MIWHA/4AGgYUCUhpRSlGgVTegDaBZHQJK1w3T/hl11fZQoaAZoCWgPQwg3ABsQocdiQJSGlFKUaBVN6ANoFkdAkrcy8rZrYXV9lChoBmgJaA9DCBzqd2HrAmRAlIaUUpRoFU3oA2gWR0CSuJQq7ROUdX2UKGgGaAloD0MICYofY+7JZUCUhpRSlGgVTegDaBZHQJK8IB3iaRZ1fZQoaAZoCWgPQwivBb03BmdoQJSGlFKUaBVN6ANoFkdAksCnoTwlSnV9lChoBmgJaA9DCA6ki02rV2VAlIaUUpRoFU3oA2gWR0CSwsTTOPeYdX2UKGgGaAloD0MIwHlx4isGZECUhpRSlGgVTegDaBZHQJLHdZ0Syt51fZQoaAZoCWgPQwjTUKOQ5NtlQJSGlFKUaBVN6ANoFkdAks24Er5IpnV9lChoBmgJaA9DCFvR5jg3w2BAlIaUUpRoFU3oA2gWR0CSzjnCO3lTdX2UKGgGaAloD0MIyY/4FWvWRUCUhpRSlGgVS8xoFkdAktN1U6xPf3V9lChoBmgJaA9DCD9Tr1uEnWJAlIaUUpRoFU3oA2gWR0CS8vLt/nW8dX2UKGgGaAloD0MI0VeQZqzKZECUhpRSlGgVTegDaBZHQJL8vC/Glyl1fZQoaAZoCWgPQwgRqz/CMANkQJSGlFKUaBVN6ANoFkdAkv+VEAo5P3V9lChoBmgJaA9DCAGFevoIxmBAlIaUUpRoFU3oA2gWR0CTBCBHTZxrdX2UKGgGaAloD0MInplgOFfaaECUhpRSlGgVTegDaBZHQJMFlul41P51fZQoaAZoCWgPQwi1/pYAfJpiQJSGlFKUaBVN6ANoFkdAkwfDVMEidXV9lChoBmgJaA9DCDV5ymo6umVAlIaUUpRoFU3oA2gWR0CTB+46Oo5xdX2UKGgGaAloD0MILudSXFWpZkCUhpRSlGgVTegDaBZHQJMJeoVEd/91fZQoaAZoCWgPQwjlY3eBkothQJSGlFKUaBVN6ANoFkdAkwsIe5nUUnV9lChoBmgJaA9DCJdxUwPNC2JAlIaUUpRoFU3oA2gWR0CTDKE7nxJ/dX2UKGgGaAloD0MIE5z6QHKcYECUhpRSlGgVTegDaBZHQJMQncbiqAB1fZQoaAZoCWgPQwiAnDBhtJBiQJSGlFKUaBVN6ANoFkdAkxWsKkVN6HV9lChoBmgJaA9DCF2j5UAPImZAlIaUUpRoFU3oA2gWR0CTGL10T101dX2UKGgGaAloD0MI2o8UkeFuZECUhpRSlGgVTegDaBZHQJMrUsoUi6h1fZQoaAZoCWgPQwjQDU3Z6TNjQJSGlFKUaBVN6ANoFkdAkyvJCWu5jHV9lChoBmgJaA9DCAdBR6va2WRAlIaUUpRoFU3oA2gWR0CTMcfG+9J0dX2UKGgGaAloD0MIQukLIWd1ZECUhpRSlGgVTegDaBZHQJNLrbEgntx1fZQoaAZoCWgPQwioxks3Cc1kQJSGlFKUaBVN6ANoFkdAk1eAJb+tKnV9lChoBmgJaA9DCFLy6hwDrV9AlIaUUpRoFU3oA2gWR0CTW47TUiIMdX2UKGgGaAloD0MIe90iMNYuY0CUhpRSlGgVTegDaBZHQJNiWXC0ngJ1fZQoaAZoCWgPQwh1BHCzeLNhQJSGlFKUaBVN6ANoFkdAk2STBRAKOXV9lChoBmgJaA9DCGx55XrbT2NAlIaUUpRoFU3oA2gWR0CTZ8r3Cbc5dX2UKGgGaAloD0MII6DCESQHaUCUhpRSlGgVTegDaBZHQJNn+GDcuap1fZQoaAZoCWgPQwg/GePDbEhmQJSGlFKUaBVN6ANoFkdAk2lQg5imVXV9lChoBmgJaA9DCPoNEw1SNGNAlIaUUpRoFU3oA2gWR0CTarmoBJZodX2UKGgGaAloD0MIzF8hc2XcZUCUhpRSlGgVTegDaBZHQJNsKgam4y51fZQoaAZoCWgPQwhzS6sh8dVkQJSGlFKUaBVN6ANoFkdAk2/JaiblR3V9lChoBmgJaA9DCLGmsihs2WNAlIaUUpRoFU3oA2gWR0CTdLBl+VkddX2UKGgGaAloD0MITTEHQcf2YUCUhpRSlGgVTegDaBZHQJN3DakAPup1fZQoaAZoCWgPQwgydVd2QW5hQJSGlFKUaBVN6ANoFkdAk4NkY8+zMXV9lChoBmgJaA9DCMfUXdkFCWVAlIaUUpRoFU3oA2gWR0CTg9eyAxzrdX2UKGgGaAloD0MINo/DYP4+ZUCUhpRSlGgVTegDaBZHQJOJYUg0TDh1fZQoaAZoCWgPQwjLLa2GxDpkQJSGlFKUaBVN6ANoFkdAk471Ed/8VHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f244d873307d5db1df992e1f20802526dce3fb3ee0ce6c2a2c8ff9162dde485
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e301969dcc41200d49ed061937ea4b3d4c3411607722d18d77d4fd7abfb5db
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.10104312978328, "std_reward": 24.472001208344007, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T09:01:34.751676"}