Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.10 +/- 24.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff38198e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff38198ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff38198f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff3819d040>", "_build": "<function ActorCriticPolicy._build at 0x7eff3819d0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff3819d160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff3819d1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff3819d280>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff3819d310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff3819d3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff3819d430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff3819d4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff381956c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677486377267668841, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT+DvPGny8RcN3vAw3ET1GSNg9wP7jvQAAgD8AAIA/M31tvSkcUrqqL3y65tCENAfddrtVc5A5AACAPwAAgD/NCIu8HwXmtzq7ebrNURe2LTbQO/YKljkAAIA/AACAP1pY9L0pJgm8hqs3PrdYqb0Kvge9yDmhvgAAgD8AAIA/QPGUPfbEMror2bo70zUaOGo0f7q45Ja2AACAPwAAgD+tAxa+bM/cu5P9zLyZnxO7lBY4PU6r+DsAAIA/AACAPw0qoL1CGZM/+se8vsQKHL/iGIW9QwvnvQAAAAAAAAAAGq45vVy7OLqSSRI4XLOUsg+BV7t2oim3AACAPwAAgD/N5GI8w8FhuiVuVjulP6a2PnyJu9Z+droAAIA/AACAPzOrD7zDoUu6MyXQOwHivzeTsas6OkoBNgAAgD8AAIA/5s7TvfdpxT5ieyE+7zN5vqhsmLwaPgA+AAAAAAAAAAAz6+079tQ9ur1AOzvNaDO0u84qOqYSVboAAIA/AACAPxo9aT32vH+6QlPFutdzF7Y8NlW7wtvjOQAAgD8AAIA/ZqZxvVwHProW/ze69YKGtVu++jpS7VE5AACAPwAAgD8N9pC9w/lBuv+kArr2+hC2f/3gOuJbFTkAAIA/AACAP4CoIr1Io4+65Tw1OtwXLzXU6LC6a0pSuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ZleYiwhZkCUhpRSlIwBbJRN6AOMAXSUR0CRn7371qWUdX2UKGgGaAloD0MI1ouhnGh8ZUCUhpRSlGgVTegDaBZHQJGi9rTH80l1fZQoaAZoCWgPQwjutaD3RkljQJSGlFKUaBVN6ANoFkdAkaVim/FirnV9lChoBmgJaA9DCMUe2scKImJAlIaUUpRoFU3oA2gWR0CRp7uNgjQidX2UKGgGaAloD0MIaOp1i0DyYECUhpRSlGgVTegDaBZHQJGqCFM7EHd1fZQoaAZoCWgPQwiGV5I8151hQJSGlFKUaBVN6ANoFkdAkavX5WRzR3V9lChoBmgJaA9DCO2A64qZS2ZAlIaUUpRoFU3oA2gWR0CRrKNBWxQjdX2UKGgGaAloD0MIAaH18GVHYUCUhpRSlGgVTegDaBZHQJGu/YywfQt1fZQoaAZoCWgPQwjHLebnhq5nQJSGlFKUaBVN6ANoFkdAkbQnAuZkTnV9lChoBmgJaA9DCPPJiuFqHGJAlIaUUpRoFU3oA2gWR0CRuquiN83NdX2UKGgGaAloD0MI+PwwQviEaECUhpRSlGgVTegDaBZHQJHBmn4wh4d1fZQoaAZoCWgPQwhA+bt31DBeQJSGlFKUaBVN6ANoFkdAkdzuPq9oOHV9lChoBmgJaA9DCBzPZ0C9TWZAlIaUUpRoFU3oA2gWR0CR3j8c+7lJdX2UKGgGaAloD0MIGF+0xwvOYkCUhpRSlGgVTegDaBZHQJHfip3os7N1fZQoaAZoCWgPQwjtYS8UsOxjQJSGlFKUaBVN6ANoFkdAkeHjlgc94nV9lChoBmgJaA9DCLdhFASPjx/AlIaUUpRoFUvAaBZHQJHtFlRP4211fZQoaAZoCWgPQwi9NbBVgvNCQJSGlFKUaBVL4WgWR0CR8HnXNC7cdX2UKGgGaAloD0MIhuP5DKglYUCUhpRSlGgVTegDaBZHQJH1Gk1uR9x1fZQoaAZoCWgPQwhXzt4ZbcpgQJSGlFKUaBVN6ANoFkdAkfaZGWldknV9lChoBmgJaA9DCNLfS+HB3WJAlIaUUpRoFU3oA2gWR0CR+LcKgIyCdX2UKGgGaAloD0MIdnCwNzHxZECUhpRSlGgVTegDaBZHQJH6VxbSqlx1fZQoaAZoCWgPQwi+E7NeDKdfQJSGlFKUaBVN6ANoFkdAkfvr4vexfXV9lChoBmgJaA9DCJ7Q60/i92JAlIaUUpRoFU3oA2gWR0CR/YiRGMGYdX2UKGgGaAloD0MIblD7rR2bZUCUhpRSlGgVTegDaBZHQJH/GhbnoxJ1fZQoaAZoCWgPQwjPMSB7PXNgQJSGlFKUaBVN6ANoFkdAkf/Oi35N5HV9lChoBmgJaA9DCNvBiH2CNWRAlIaUUpRoFU3oA2gWR0CSAdq9GqgidX2UKGgGaAloD0MIzas6q4W9ZUCUhpRSlGgVTegDaBZHQJIHINLDhtN1fZQoaAZoCWgPQwi5wyYyc4tJQJSGlFKUaBVLqGgWR0CSCV0bcXWOdX2UKGgGaAloD0MIqmBUUieIQECUhpRSlGgVS8FoFkdAkgos8TzunnV9lChoBmgJaA9DCK9fsBu2r2VAlIaUUpRoFU3oA2gWR0CSDl0lJHy3dX2UKGgGaAloD0MIOzquRnapMECUhpRSlGgVS7NoFkdAkhTipR4yGnV9lChoBmgJaA9DCILK+PcZA2VAlIaUUpRoFU3oA2gWR0CSFVS4OMESdX2UKGgGaAloD0MI4xdeSXJ1ZUCUhpRSlGgVTegDaBZHQJI2VsXSBsh1fZQoaAZoCWgPQwiXdf9YiKFhQJSGlFKUaBVN6ANoFkdAkjp8clw97nV9lChoBmgJaA9DCC8X8Z2YyV5AlIaUUpRoFU3oA2gWR0CSQ5faHsTndX2UKGgGaAloD0MIjiCVYsdCYkCUhpRSlGgVTegDaBZHQJJG4DRtxdZ1fZQoaAZoCWgPQwhaEqCmFuFhQJSGlFKUaBVN6ANoFkdAkktJKnNxEXV9lChoBmgJaA9DCN+I7lnXkWhAlIaUUpRoFU3oA2gWR0CSTMc2zfJndX2UKGgGaAloD0MISDKrd7iPZUCUhpRSlGgVTegDaBZHQJJPHRSgoPV1fZQoaAZoCWgPQwiCOuXRjepoQJSGlFKUaBVN6ANoFkdAklDd8E3bVXV9lChoBmgJaA9DCCLfpdQlCWBAlIaUUpRoFU3oA2gWR0CSUuqW1MM7dX2UKGgGaAloD0MILH3ognoSZkCUhpRSlGgVTegDaBZHQJJVPKeTV2B1fZQoaAZoCWgPQwhvhEVFHOVlQJSGlFKUaBVN6ANoFkdAklsev+wTunV9lChoBmgJaA9DCJ+u7lhs3WRAlIaUUpRoFU3oA2gWR0CSYyywwCbMdX2UKGgGaAloD0MI8BmJ0AifZUCUhpRSlGgVTegDaBZHQJJm0J7b+Lp1fZQoaAZoCWgPQwhtVRLZh85gQJSGlFKUaBVN6ANoFkdAkmy/jOs1bnV9lChoBmgJaA9DCHuhgO1g9mRAlIaUUpRoFU3oA2gWR0CSc8UxEfDDdX2UKGgGaAloD0MI6X+5Fq1qYECUhpRSlGgVTegDaBZHQJJ0MU8FINF1fZQoaAZoCWgPQwjhtUsbjilpQJSGlFKUaBVN6ANoFkdAknsZDRc/uHV9lChoBmgJaA9DCIQroFDPc2RAlIaUUpRoFU3oA2gWR0CSlbyKNyYHdX2UKGgGaAloD0MIf4eiQB+eYECUhpRSlGgVTegDaBZHQJKkKQA+6iF1fZQoaAZoCWgPQwg+JefEHm5HQJSGlFKUaBVL12gWR0CSpLw5vLowdX2UKGgGaAloD0MIvyfWqXLlZECUhpRSlGgVTegDaBZHQJKoqYfGMn91fZQoaAZoCWgPQwjz4sRXO6tkQJSGlFKUaBVN6ANoFkdAkq8Huy/sV3V9lChoBmgJaA9DCApoImz4w2JAlIaUUpRoFU3oA2gWR0CSsP8gIQe4dX2UKGgGaAloD0MIxEFClC/paECUhpRSlGgVTegDaBZHQJK0Enc+JP91fZQoaAZoCWgPQwimK9hGPAFHQJSGlFKUaBVLumgWR0CStDpoK2KEdX2UKGgGaAloD0MIWHA/4AGgYUCUhpRSlGgVTegDaBZHQJK1w3T/hl11fZQoaAZoCWgPQwg3ABsQocdiQJSGlFKUaBVN6ANoFkdAkrcy8rZrYXV9lChoBmgJaA9DCBzqd2HrAmRAlIaUUpRoFU3oA2gWR0CSuJQq7ROUdX2UKGgGaAloD0MICYofY+7JZUCUhpRSlGgVTegDaBZHQJK8IB3iaRZ1fZQoaAZoCWgPQwivBb03BmdoQJSGlFKUaBVN6ANoFkdAksCnoTwlSnV9lChoBmgJaA9DCA6ki02rV2VAlIaUUpRoFU3oA2gWR0CSwsTTOPeYdX2UKGgGaAloD0MIwHlx4isGZECUhpRSlGgVTegDaBZHQJLHdZ0Syt51fZQoaAZoCWgPQwjTUKOQ5NtlQJSGlFKUaBVN6ANoFkdAks24Er5IpnV9lChoBmgJaA9DCFvR5jg3w2BAlIaUUpRoFU3oA2gWR0CSzjnCO3lTdX2UKGgGaAloD0MIyY/4FWvWRUCUhpRSlGgVS8xoFkdAktN1U6xPf3V9lChoBmgJaA9DCD9Tr1uEnWJAlIaUUpRoFU3oA2gWR0CS8vLt/nW8dX2UKGgGaAloD0MI0VeQZqzKZECUhpRSlGgVTegDaBZHQJL8vC/Glyl1fZQoaAZoCWgPQwgRqz/CMANkQJSGlFKUaBVN6ANoFkdAkv+VEAo5P3V9lChoBmgJaA9DCAGFevoIxmBAlIaUUpRoFU3oA2gWR0CTBCBHTZxrdX2UKGgGaAloD0MInplgOFfaaECUhpRSlGgVTegDaBZHQJMFlul41P51fZQoaAZoCWgPQwi1/pYAfJpiQJSGlFKUaBVN6ANoFkdAkwfDVMEidXV9lChoBmgJaA9DCDV5ymo6umVAlIaUUpRoFU3oA2gWR0CTB+46Oo5xdX2UKGgGaAloD0MILudSXFWpZkCUhpRSlGgVTegDaBZHQJMJeoVEd/91fZQoaAZoCWgPQwjlY3eBkothQJSGlFKUaBVN6ANoFkdAkwsIe5nUUnV9lChoBmgJaA9DCJdxUwPNC2JAlIaUUpRoFU3oA2gWR0CTDKE7nxJ/dX2UKGgGaAloD0MIE5z6QHKcYECUhpRSlGgVTegDaBZHQJMQncbiqAB1fZQoaAZoCWgPQwiAnDBhtJBiQJSGlFKUaBVN6ANoFkdAkxWsKkVN6HV9lChoBmgJaA9DCF2j5UAPImZAlIaUUpRoFU3oA2gWR0CTGL10T101dX2UKGgGaAloD0MI2o8UkeFuZECUhpRSlGgVTegDaBZHQJMrUsoUi6h1fZQoaAZoCWgPQwjQDU3Z6TNjQJSGlFKUaBVN6ANoFkdAkyvJCWu5jHV9lChoBmgJaA9DCAdBR6va2WRAlIaUUpRoFU3oA2gWR0CTMcfG+9J0dX2UKGgGaAloD0MIQukLIWd1ZECUhpRSlGgVTegDaBZHQJNLrbEgntx1fZQoaAZoCWgPQwioxks3Cc1kQJSGlFKUaBVN6ANoFkdAk1eAJb+tKnV9lChoBmgJaA9DCFLy6hwDrV9AlIaUUpRoFU3oA2gWR0CTW47TUiIMdX2UKGgGaAloD0MIe90iMNYuY0CUhpRSlGgVTegDaBZHQJNiWXC0ngJ1fZQoaAZoCWgPQwh1BHCzeLNhQJSGlFKUaBVN6ANoFkdAk2STBRAKOXV9lChoBmgJaA9DCGx55XrbT2NAlIaUUpRoFU3oA2gWR0CTZ8r3Cbc5dX2UKGgGaAloD0MII6DCESQHaUCUhpRSlGgVTegDaBZHQJNn+GDcuap1fZQoaAZoCWgPQwg/GePDbEhmQJSGlFKUaBVN6ANoFkdAk2lQg5imVXV9lChoBmgJaA9DCPoNEw1SNGNAlIaUUpRoFU3oA2gWR0CTarmoBJZodX2UKGgGaAloD0MIzF8hc2XcZUCUhpRSlGgVTegDaBZHQJNsKgam4y51fZQoaAZoCWgPQwhzS6sh8dVkQJSGlFKUaBVN6ANoFkdAk2/JaiblR3V9lChoBmgJaA9DCLGmsihs2WNAlIaUUpRoFU3oA2gWR0CTdLBl+VkddX2UKGgGaAloD0MITTEHQcf2YUCUhpRSlGgVTegDaBZHQJN3DakAPup1fZQoaAZoCWgPQwgydVd2QW5hQJSGlFKUaBVN6ANoFkdAk4NkY8+zMXV9lChoBmgJaA9DCMfUXdkFCWVAlIaUUpRoFU3oA2gWR0CTg9eyAxzrdX2UKGgGaAloD0MINo/DYP4+ZUCUhpRSlGgVTegDaBZHQJOJYUg0TDh1fZQoaAZoCWgPQwjLLa2GxDpkQJSGlFKUaBVN6ANoFkdAk471Ed/8VHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95d255f167d52d4de687e51facae35bdcb7c433ed34de800dad9429abc64a8c3
|
3 |
+
size 147416
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff38198e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff38198ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff38198f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff3819d040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff3819d0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff3819d160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff3819d1f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff3819d280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff3819d310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff3819d3a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff3819d430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff3819d4c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7eff381956c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677486377267668841,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOT+DvPGny8RcN3vAw3ET1GSNg9wP7jvQAAgD8AAIA/M31tvSkcUrqqL3y65tCENAfddrtVc5A5AACAPwAAgD/NCIu8HwXmtzq7ebrNURe2LTbQO/YKljkAAIA/AACAP1pY9L0pJgm8hqs3PrdYqb0Kvge9yDmhvgAAgD8AAIA/QPGUPfbEMror2bo70zUaOGo0f7q45Ja2AACAPwAAgD+tAxa+bM/cu5P9zLyZnxO7lBY4PU6r+DsAAIA/AACAPw0qoL1CGZM/+se8vsQKHL/iGIW9QwvnvQAAAAAAAAAAGq45vVy7OLqSSRI4XLOUsg+BV7t2oim3AACAPwAAgD/N5GI8w8FhuiVuVjulP6a2PnyJu9Z+droAAIA/AACAPzOrD7zDoUu6MyXQOwHivzeTsas6OkoBNgAAgD8AAIA/5s7TvfdpxT5ieyE+7zN5vqhsmLwaPgA+AAAAAAAAAAAz6+079tQ9ur1AOzvNaDO0u84qOqYSVboAAIA/AACAPxo9aT32vH+6QlPFutdzF7Y8NlW7wtvjOQAAgD8AAIA/ZqZxvVwHProW/ze69YKGtVu++jpS7VE5AACAPwAAgD8N9pC9w/lBuv+kArr2+hC2f/3gOuJbFTkAAIA/AACAP4CoIr1Io4+65Tw1OtwXLzXU6LC6a0pSuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ZleYiwhZkCUhpRSlIwBbJRN6AOMAXSUR0CRn7371qWUdX2UKGgGaAloD0MI1ouhnGh8ZUCUhpRSlGgVTegDaBZHQJGi9rTH80l1fZQoaAZoCWgPQwjutaD3RkljQJSGlFKUaBVN6ANoFkdAkaVim/FirnV9lChoBmgJaA9DCMUe2scKImJAlIaUUpRoFU3oA2gWR0CRp7uNgjQidX2UKGgGaAloD0MIaOp1i0DyYECUhpRSlGgVTegDaBZHQJGqCFM7EHd1fZQoaAZoCWgPQwiGV5I8151hQJSGlFKUaBVN6ANoFkdAkavX5WRzR3V9lChoBmgJaA9DCO2A64qZS2ZAlIaUUpRoFU3oA2gWR0CRrKNBWxQjdX2UKGgGaAloD0MIAaH18GVHYUCUhpRSlGgVTegDaBZHQJGu/YywfQt1fZQoaAZoCWgPQwjHLebnhq5nQJSGlFKUaBVN6ANoFkdAkbQnAuZkTnV9lChoBmgJaA9DCPPJiuFqHGJAlIaUUpRoFU3oA2gWR0CRuquiN83NdX2UKGgGaAloD0MI+PwwQviEaECUhpRSlGgVTegDaBZHQJHBmn4wh4d1fZQoaAZoCWgPQwhA+bt31DBeQJSGlFKUaBVN6ANoFkdAkdzuPq9oOHV9lChoBmgJaA9DCBzPZ0C9TWZAlIaUUpRoFU3oA2gWR0CR3j8c+7lJdX2UKGgGaAloD0MIGF+0xwvOYkCUhpRSlGgVTegDaBZHQJHfip3os7N1fZQoaAZoCWgPQwjtYS8UsOxjQJSGlFKUaBVN6ANoFkdAkeHjlgc94nV9lChoBmgJaA9DCLdhFASPjx/AlIaUUpRoFUvAaBZHQJHtFlRP4211fZQoaAZoCWgPQwi9NbBVgvNCQJSGlFKUaBVL4WgWR0CR8HnXNC7cdX2UKGgGaAloD0MIhuP5DKglYUCUhpRSlGgVTegDaBZHQJH1Gk1uR9x1fZQoaAZoCWgPQwhXzt4ZbcpgQJSGlFKUaBVN6ANoFkdAkfaZGWldknV9lChoBmgJaA9DCNLfS+HB3WJAlIaUUpRoFU3oA2gWR0CR+LcKgIyCdX2UKGgGaAloD0MIdnCwNzHxZECUhpRSlGgVTegDaBZHQJH6VxbSqlx1fZQoaAZoCWgPQwi+E7NeDKdfQJSGlFKUaBVN6ANoFkdAkfvr4vexfXV9lChoBmgJaA9DCJ7Q60/i92JAlIaUUpRoFU3oA2gWR0CR/YiRGMGYdX2UKGgGaAloD0MIblD7rR2bZUCUhpRSlGgVTegDaBZHQJH/GhbnoxJ1fZQoaAZoCWgPQwjPMSB7PXNgQJSGlFKUaBVN6ANoFkdAkf/Oi35N5HV9lChoBmgJaA9DCNvBiH2CNWRAlIaUUpRoFU3oA2gWR0CSAdq9GqgidX2UKGgGaAloD0MIzas6q4W9ZUCUhpRSlGgVTegDaBZHQJIHINLDhtN1fZQoaAZoCWgPQwi5wyYyc4tJQJSGlFKUaBVLqGgWR0CSCV0bcXWOdX2UKGgGaAloD0MIqmBUUieIQECUhpRSlGgVS8FoFkdAkgos8TzunnV9lChoBmgJaA9DCK9fsBu2r2VAlIaUUpRoFU3oA2gWR0CSDl0lJHy3dX2UKGgGaAloD0MIOzquRnapMECUhpRSlGgVS7NoFkdAkhTipR4yGnV9lChoBmgJaA9DCILK+PcZA2VAlIaUUpRoFU3oA2gWR0CSFVS4OMESdX2UKGgGaAloD0MI4xdeSXJ1ZUCUhpRSlGgVTegDaBZHQJI2VsXSBsh1fZQoaAZoCWgPQwiXdf9YiKFhQJSGlFKUaBVN6ANoFkdAkjp8clw97nV9lChoBmgJaA9DCC8X8Z2YyV5AlIaUUpRoFU3oA2gWR0CSQ5faHsTndX2UKGgGaAloD0MIjiCVYsdCYkCUhpRSlGgVTegDaBZHQJJG4DRtxdZ1fZQoaAZoCWgPQwhaEqCmFuFhQJSGlFKUaBVN6ANoFkdAkktJKnNxEXV9lChoBmgJaA9DCN+I7lnXkWhAlIaUUpRoFU3oA2gWR0CSTMc2zfJndX2UKGgGaAloD0MISDKrd7iPZUCUhpRSlGgVTegDaBZHQJJPHRSgoPV1fZQoaAZoCWgPQwiCOuXRjepoQJSGlFKUaBVN6ANoFkdAklDd8E3bVXV9lChoBmgJaA9DCCLfpdQlCWBAlIaUUpRoFU3oA2gWR0CSUuqW1MM7dX2UKGgGaAloD0MILH3ognoSZkCUhpRSlGgVTegDaBZHQJJVPKeTV2B1fZQoaAZoCWgPQwhvhEVFHOVlQJSGlFKUaBVN6ANoFkdAklsev+wTunV9lChoBmgJaA9DCJ+u7lhs3WRAlIaUUpRoFU3oA2gWR0CSYyywwCbMdX2UKGgGaAloD0MI8BmJ0AifZUCUhpRSlGgVTegDaBZHQJJm0J7b+Lp1fZQoaAZoCWgPQwhtVRLZh85gQJSGlFKUaBVN6ANoFkdAkmy/jOs1bnV9lChoBmgJaA9DCHuhgO1g9mRAlIaUUpRoFU3oA2gWR0CSc8UxEfDDdX2UKGgGaAloD0MI6X+5Fq1qYECUhpRSlGgVTegDaBZHQJJ0MU8FINF1fZQoaAZoCWgPQwjhtUsbjilpQJSGlFKUaBVN6ANoFkdAknsZDRc/uHV9lChoBmgJaA9DCIQroFDPc2RAlIaUUpRoFU3oA2gWR0CSlbyKNyYHdX2UKGgGaAloD0MIf4eiQB+eYECUhpRSlGgVTegDaBZHQJKkKQA+6iF1fZQoaAZoCWgPQwg+JefEHm5HQJSGlFKUaBVL12gWR0CSpLw5vLowdX2UKGgGaAloD0MIvyfWqXLlZECUhpRSlGgVTegDaBZHQJKoqYfGMn91fZQoaAZoCWgPQwjz4sRXO6tkQJSGlFKUaBVN6ANoFkdAkq8Huy/sV3V9lChoBmgJaA9DCApoImz4w2JAlIaUUpRoFU3oA2gWR0CSsP8gIQe4dX2UKGgGaAloD0MIxEFClC/paECUhpRSlGgVTegDaBZHQJK0Enc+JP91fZQoaAZoCWgPQwimK9hGPAFHQJSGlFKUaBVLumgWR0CStDpoK2KEdX2UKGgGaAloD0MIWHA/4AGgYUCUhpRSlGgVTegDaBZHQJK1w3T/hl11fZQoaAZoCWgPQwg3ABsQocdiQJSGlFKUaBVN6ANoFkdAkrcy8rZrYXV9lChoBmgJaA9DCBzqd2HrAmRAlIaUUpRoFU3oA2gWR0CSuJQq7ROUdX2UKGgGaAloD0MICYofY+7JZUCUhpRSlGgVTegDaBZHQJK8IB3iaRZ1fZQoaAZoCWgPQwivBb03BmdoQJSGlFKUaBVN6ANoFkdAksCnoTwlSnV9lChoBmgJaA9DCA6ki02rV2VAlIaUUpRoFU3oA2gWR0CSwsTTOPeYdX2UKGgGaAloD0MIwHlx4isGZECUhpRSlGgVTegDaBZHQJLHdZ0Syt51fZQoaAZoCWgPQwjTUKOQ5NtlQJSGlFKUaBVN6ANoFkdAks24Er5IpnV9lChoBmgJaA9DCFvR5jg3w2BAlIaUUpRoFU3oA2gWR0CSzjnCO3lTdX2UKGgGaAloD0MIyY/4FWvWRUCUhpRSlGgVS8xoFkdAktN1U6xPf3V9lChoBmgJaA9DCD9Tr1uEnWJAlIaUUpRoFU3oA2gWR0CS8vLt/nW8dX2UKGgGaAloD0MI0VeQZqzKZECUhpRSlGgVTegDaBZHQJL8vC/Glyl1fZQoaAZoCWgPQwgRqz/CMANkQJSGlFKUaBVN6ANoFkdAkv+VEAo5P3V9lChoBmgJaA9DCAGFevoIxmBAlIaUUpRoFU3oA2gWR0CTBCBHTZxrdX2UKGgGaAloD0MInplgOFfaaECUhpRSlGgVTegDaBZHQJMFlul41P51fZQoaAZoCWgPQwi1/pYAfJpiQJSGlFKUaBVN6ANoFkdAkwfDVMEidXV9lChoBmgJaA9DCDV5ymo6umVAlIaUUpRoFU3oA2gWR0CTB+46Oo5xdX2UKGgGaAloD0MILudSXFWpZkCUhpRSlGgVTegDaBZHQJMJeoVEd/91fZQoaAZoCWgPQwjlY3eBkothQJSGlFKUaBVN6ANoFkdAkwsIe5nUUnV9lChoBmgJaA9DCJdxUwPNC2JAlIaUUpRoFU3oA2gWR0CTDKE7nxJ/dX2UKGgGaAloD0MIE5z6QHKcYECUhpRSlGgVTegDaBZHQJMQncbiqAB1fZQoaAZoCWgPQwiAnDBhtJBiQJSGlFKUaBVN6ANoFkdAkxWsKkVN6HV9lChoBmgJaA9DCF2j5UAPImZAlIaUUpRoFU3oA2gWR0CTGL10T101dX2UKGgGaAloD0MI2o8UkeFuZECUhpRSlGgVTegDaBZHQJMrUsoUi6h1fZQoaAZoCWgPQwjQDU3Z6TNjQJSGlFKUaBVN6ANoFkdAkyvJCWu5jHV9lChoBmgJaA9DCAdBR6va2WRAlIaUUpRoFU3oA2gWR0CTMcfG+9J0dX2UKGgGaAloD0MIQukLIWd1ZECUhpRSlGgVTegDaBZHQJNLrbEgntx1fZQoaAZoCWgPQwioxks3Cc1kQJSGlFKUaBVN6ANoFkdAk1eAJb+tKnV9lChoBmgJaA9DCFLy6hwDrV9AlIaUUpRoFU3oA2gWR0CTW47TUiIMdX2UKGgGaAloD0MIe90iMNYuY0CUhpRSlGgVTegDaBZHQJNiWXC0ngJ1fZQoaAZoCWgPQwh1BHCzeLNhQJSGlFKUaBVN6ANoFkdAk2STBRAKOXV9lChoBmgJaA9DCGx55XrbT2NAlIaUUpRoFU3oA2gWR0CTZ8r3Cbc5dX2UKGgGaAloD0MII6DCESQHaUCUhpRSlGgVTegDaBZHQJNn+GDcuap1fZQoaAZoCWgPQwg/GePDbEhmQJSGlFKUaBVN6ANoFkdAk2lQg5imVXV9lChoBmgJaA9DCPoNEw1SNGNAlIaUUpRoFU3oA2gWR0CTarmoBJZodX2UKGgGaAloD0MIzF8hc2XcZUCUhpRSlGgVTegDaBZHQJNsKgam4y51fZQoaAZoCWgPQwhzS6sh8dVkQJSGlFKUaBVN6ANoFkdAk2/JaiblR3V9lChoBmgJaA9DCLGmsihs2WNAlIaUUpRoFU3oA2gWR0CTdLBl+VkddX2UKGgGaAloD0MITTEHQcf2YUCUhpRSlGgVTegDaBZHQJN3DakAPup1fZQoaAZoCWgPQwgydVd2QW5hQJSGlFKUaBVN6ANoFkdAk4NkY8+zMXV9lChoBmgJaA9DCMfUXdkFCWVAlIaUUpRoFU3oA2gWR0CTg9eyAxzrdX2UKGgGaAloD0MINo/DYP4+ZUCUhpRSlGgVTegDaBZHQJOJYUg0TDh1fZQoaAZoCWgPQwjLLa2GxDpkQJSGlFKUaBVN6ANoFkdAk471Ed/8VHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f244d873307d5db1df992e1f20802526dce3fb3ee0ce6c2a2c8ff9162dde485
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3e301969dcc41200d49ed061937ea4b3d4c3411607722d18d77d4fd7abfb5db
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (222 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.10104312978328, "std_reward": 24.472001208344007, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T09:01:34.751676"}
|