File size: 4,419 Bytes
b0fc450 d6bcf24 b0fc450 d6bcf24 b0fc450 d6bcf24 b0fc450 c3cac38 b0fc450 d6bcf24 b0fc450 d6bcf24 b0fc450 d6bcf24 691821c d6bcf24 c3cac38 d6bcf24 c3cac38 d6bcf24 d87c808 d6bcf24 d87c808 d6bcf24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- gammacorpus
- zurich
- chat
- conversational
license: apache-2.0
language:
- en
datasets:
- rubenroy/GammaCorpus-v2-500k
pipeline_tag: text-generation
library_name: transformers
---
![Zunich Banner](https://cdn.ruben-roy.com/AI/Zurich/img/banner-7B-500k.png)
# Zurich 7B GammaCorpus v2-500k
*A Qwen 2.5 model fine-tuned on the GammaCorpus dataset*
## Overview
Zurich 7B GammaCorpus v2-500k is a fine-tune of Alibaba's **Qwen 2.5 7B Instruct** model. Zurich is designed to outperform other models that have a similar size while also showcasing [GammaCorpus v2-500k](https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-500k).
## Model Details
- **Base Model:** [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
- **Type:** Causal Language Models
- **Architecture:** Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- **Number of Parameters:** 7.61B
- **Number of Paramaters (Non-Embedding):** 6.53B
- **Number of Layers:** 28
- **Number of Attention Heads (GQA):** 28 for Q and 4 for KV
## Training Details
Zurich-7B-GCv2-500k underwent fine-tuning with 1 T4 GPU for ~290 minutes and trained with the [Unsloth](https://unsloth.ai/) framework. Zurich-7B-GCv2-500k was trained for **60 Epochs**.
## Usage
### Requirements
We **strongly** recommend you use the latest version of the `transformers` package. You may install it via `pip` as follows:
```
pip install transformers
```
### Quickstart
Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents;
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "rubenroy/Zurich-7B-GCv2-500k"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How tall is the Eiffel tower?"
messages = [
{"role": "system", "content": "You are Zurich, an AI assistant built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## About GammaCorpus
This model, and all Zurich models, are trained with GammaCorpus. GammaCorpus is a dataset on HuggingFace that is filled with structured and filtered multi-turn conversations.
GammaCorpus has 4 version with different sizes in each. These are the following versions and sizes:
### GammaCorpus v1
- 10k UNFILTERED
- 50k UNFILTERED
- 70k UNFILTERED
Here is a link to the GCv1 dataset collection:<br>
https://huggingface.co/collections/rubenroy/gammacorpus-v1-67935e4e52a04215f15a7a60
### GammaCorpus v2
- 10k
- 50k
- 100k
- **500k <-- This is the version of GammaCorpus v2 that the Zurich model you are using was trained on.**
- 1m
- 5m
Here is a link to the GCv2 dataset collection:<br>
https://huggingface.co/collections/rubenroy/gammacorpus-v2-67935e895e1259c404a579df
### GammaCorpus CoT
- Math 170k
Here is a link to the GC-CoT dataset collection:<br>
https://huggingface.co/collections/rubenroy/gammacorpus-cot-6795bbc950b62b1ced41d14f
### GammaCorpus QA
- Fact 450k
Here is a link to the GC-QA dataset collection:<br>
https://huggingface.co/collections/rubenroy/gammacorpus-qa-679857017bb3855234c1d8c7
### The link to the full GammaCorpus dataset collection can be found [here](https://huggingface.co/collections/rubenroy/gammacorpus-67765abf607615a0eb6d61ac).
## Known Limitations
- **Bias:** We have tried our best to mitigate as much bias we can, but please be aware of the possibility that the model might generate some biased answers.
## Additional Information
### Licensing Information
The model is released under the **[Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0)**. Please refer to the license for usage rights and restrictions. |