File size: 9,541 Bytes
64967ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language: en
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 English by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice en
      type: common_voice
      args: en
    metrics:
       - name: Test WER
         type: wer
         value: 39.59
       - name: Test CER
         type: cer
         value: 18.18
---

# Wav2Vec2-Large-XLSR-53-English

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| "SHE'LL BE ALL RIGHT." | SHE'LD BE ALL RIGHT |
| SIX | SIX |
| "ALL'S WELL THAT ENDS WELL." | ALL IS WELL THAT ENDS WELL |
| DO YOU MEAN IT? | DO YOU MEAN IT |
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOWIS MOCILE ARE GOING TO HANDLE AMBIGUITIES LIKE KU AND KU |
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RISSHON WAS INCAN IN THE BAK TE |
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUISE IS SAUCED FOR THE GONDER |
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |

## Evaluation

The model can be evaluated as follows on the English test data of Common Voice.

```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

# uncomment the following lines to eval using other datasets
# test_dataset = load_dataset("librispeech_asr", "clean", split="test")
# test_dataset = load_dataset("librispeech_asr", "other", split="test")
# test_dataset = load_dataset("timit_asr", split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["file"] if "file" in batch else batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["text"] if "text" in batch else batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```

**Test Result**:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-20). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

---

**Common Voice**

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **19.18%** | **8.25%** |
| jonatasgrosman/wav2vec2-large-english | 21.16% | 9.53% |
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
| facebook/wav2vec2-large-960h | 32.79% | 16.03% |
| boris/xlsr-en-punctuation | 34.81% | 15.51% |
| facebook/wav2vec2-base-960h | 39.86% | 19.89% |
| facebook/wav2vec2-base-100h | 51.06% | 25.06% |
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |

---

**LibriSpeech (clean)**

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| facebook/wav2vec2-large-960h-lv60-self | **1.86%** | **0.54%** |
| facebook/wav2vec2-large-960h-lv60 | 2.15% | 0.61% |
| facebook/wav2vec2-large-960h | 2.82% | 0.84% |
| facebook/wav2vec2-base-960h | 3.44% | 1.06% |
| facebook/wav2vec2-base-100h | 6.26% | 2.00% |
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 6.97% | 2.02% |
| jonatasgrosman/wav2vec2-large-english | 8.00% | 2.55% |
| elgeish/wav2vec2-large-lv60-timit-asr | 15.53% | 4.93% |
| boris/xlsr-en-punctuation | 19.28% | 6.45% |
| elgeish/wav2vec2-base-timit-asr | 29.19% | 8.38% |
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 31.82% | 12.41% |

---

**LibriSpeech (other)**

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| facebook/wav2vec2-large-960h-lv60-self | **3.89%** | **1.40%** |
| facebook/wav2vec2-large-960h-lv60 | 4.45% | 1.56% |
| facebook/wav2vec2-large-960h | 6.49% | 2.52% |
| facebook/wav2vec2-base-960h | 8.90% | 3.55% |
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.75% | 4.23% |
| jonatasgrosman/wav2vec2-large-english | 13.62% | 5.24% |
| facebook/wav2vec2-base-100h | 13.97% | 5.51% |
| boris/xlsr-en-punctuation | 26.40% | 10.11% |
| elgeish/wav2vec2-large-lv60-timit-asr | 28.39% | 12.08% |
| elgeish/wav2vec2-base-timit-asr | 42.04% | 15.57% |
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 45.19% | 20.32% |

---

**TIMIT**

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| facebook/wav2vec2-large-960h-lv60-self | **5.17%** | **1.33%** |
| facebook/wav2vec2-large-960h-lv60 | 6.24% | 1.54% |
| facebook/wav2vec2-large-960h | 9.63% | 2.19% |
| facebook/wav2vec2-base-960h | 11.48% | 2.76% |
| jonatasgrosman/wav2vec2-large-xlsr-53-english | 11.93% | 3.50% |
| elgeish/wav2vec2-large-lv60-timit-asr | 13.83% | 4.36% |
| jonatasgrosman/wav2vec2-large-english | 13.91% | 4.01% |
| facebook/wav2vec2-base-100h | 16.75% | 4.79% |
| elgeish/wav2vec2-base-timit-asr | 25.40% | 8.16% |
| boris/xlsr-en-punctuation | 25.93% | 9.99% |
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 51.08% | 19.84% |