File size: 21,358 Bytes
32b6f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import argparse
import random
import glob

from tqdm import tqdm
import re
import sys
import os
import numpy as np


def generate_few_shot(prompt):
    base_gsm8k_list = [
        {
            'question': "John and his best friend Steve bought 12 cupcakes together.  Each cupcake cost $1.50. If they split the costs evenly, how much did each person pay?",
            'answer': "The total cost of cupcakes was 1.5*12=$<<1.5*12=18>>18\\nSo they each paid 18/2=$<<18/2=9>>9.",
            'direct_answer': "9"
        },
        {
            'question': "Lizzy has to ship 540 pounds of fish that are packed into 30-pound crates. If the shipping cost of each crate is $1.5, how much will Lizzy pay for the shipment?",
            'answer': "There are 540 pounds / 30 pounds/crate = <<540/30=18>>18 crates of fish needed.\\nHence, the total cost for the shipment is $1.5/crate x 18 crates = $<<1.5*18=27>>27.",
            'direct_answer': "27"
        },
        {
            'question': "Tom, Tim, and Paul are collecting photos of cars. Paul has 10 photos more than Tim. Tim has one hundred photos less than the total amount of photos which is 152. How many photos does Tom have?",
            'answer': "Tim has 152 photos - 100 photos = <<152-100=52>>52 photos.\\nWhen Tim has 52 photos, then Paul has 52 + 10 photos = <<52+10=62>>62 photos.\\nTim and Paul have together 52 photos + 62 photos = <<52+62=114>>114 photos.\\nThat leaves Tom with 152 photos - 114 photos = <<152-114=38>>38 photos.",
            'direct_answer': "38"
        },

    ]
    index_list = list(range(len(base_gsm8k_list)))
    random.shuffle(index_list)
    few_shot_example = ""
    for i in index_list:
        item = base_gsm8k_list[i]
        few_shot_example += "Q: " + item['question'] + "\n" + "A: "+ item['answer']  + "\nThe answer is " + item['direct_answer'] + "\n"

    few_shot_example += "Q: " + prompt + "A: "
    return few_shot_example



def generate_prompt_generation(args, question):
    if args.evaluation_mode == 'generation':
        if args.method == 'zero_shot_cot':
            content = question + " Let's think step by step."
        elif args.method == 'zero_shot':
            content = question
        elif args.method == 'few_shot':
            content = generate_few_shot(question)
        else:
            raise ValueError("we do not method for such model type yet")

    if "generator" not in args.model_type:
        MODEL_DICT = {
            "llama": (
                "[INST] \n{content}\n [/INST]"
            ),
            "mistral": (
                "<s>[INST] {content} [/INST]"
            ),
            "chatglm": (
                "<|user|> \n{content}\n <|assistant|>"
            ),
            "qianwen": (
                "<|im_start|>user\n{content}<|im_end|>\n<|im_start|>assistant\n"
            ),
            "deepseek-math": (
                "User: {content}\n\nAssistant: "
            ),
            "internlm2-math": (
                "<|im_start|>system\n{content}<|im_end|>\n"
            ),
            "llemma": (
                "### System Prompt\nYou are an intelligent mathematical assistant.\n\n### User Message\n{content}\n\n### Assistant"
            ),
        }

        if args.model_type in ["qianwen", "qianwen-13b", "qianwen-70b"]:
            content = MODEL_DICT['qianwen'].format_map(
                {'content': content}
            )

        elif args.model_type in ["chatglm","deepseek-math-7b-base"]:
            pass


        elif args.model_type in ['llama2-7b-chat']:
            content = MODEL_DICT['llama'].format_map(
                {'content': content}
            )

        elif args.model_type in ["mistral", 'mixtral', "Mistral-7B-Instruct-v0.2"]:
            content = MODEL_DICT['mistral'].format_map(
                {'content': content}
            )

        elif args.model_type in ["internlm2-math-20b", 'internlm2-math-7b']:
            content = MODEL_DICT['internlm2-math'].format_map(
                {'content': content}
            )
        elif args.model_type in ["llemma_34b", 'llemma_7b']:
            content = MODEL_DICT['llemma'].format_map(
                {'content': content}
            )
        elif args.model_type in ["deepseek-math-7b-instruct"]:
            content = MODEL_DICT['deepseek-math'].format_map(
                {'content': content}
            )

    return content




few_shot_list = [
    {
        'question': "There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?",
        'answer': "There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 - 15 = 6.",
        'direct_answer': "6"
    },
    {
        'question': "If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?",
        'answer': "There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.",
        'direct_answer': "5",
    },
    {
        'question': "Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?",
        'answer': "Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.",
        'direct_answer': "39",
    },
    {
        'question': "Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?",
        'answer': "Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8.",
        'direct_answer': "8",
    },
    {
        'question': "Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?",
        'answer': "Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9.",
        'direct_answer': "9",
    },
    {
        'question': "There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?",
        'answer': "There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29.",
        'direct_answer': "29",
    },
    {
        'question': "Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?",
        'answer': "Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls.",
        'direct_answer': "33",
    },
    {
        'question': "Olivia has $23. She bought five bagels for $3 each. How much money does she have left?",
        'answer': "Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15 dollars left. 23 - 15 is 8.",
        'direct_answer': "8",
    },
]
import json

from collections import Counter


def self_consistency(pairs):
    val_counts = Counter(value for key, value in pairs)
    most = val_counts.most_common(1)[0][0]
    for key, value in pairs:
        if value == most:
            return key


#
def find_feedback(content):
    match = re.search(r'Judgement: (.+)', content)
    if match:
        judgement = match.group(1)
    else:
        judgement = "None"
    return judgement


def str2bool(s):
    s = s.lower()
    if s == 'true':
        return True
    elif s == 'false':
        return False
    else:
        raise ValueError('invalid value: {}, must be true or false'.format(s))


def parse_arguments():
    parser = argparse.ArgumentParser(description="Zero-shot-CoT")

    # parser.add_argument(
    #     "--dataset", type=str, default="plan",
    #     choices=["plan", 'tool_use_awareness', 'tool_selection', 'tool_selection_harder', 'tool_creation_awareness',
    #              'tool_creation_awareness_harder', 'tool_creation',
    #              'arguments_filling'], help="dataset used for experiment")
    parser.add_argument(
        "--cot_trigger_no", type=int, default=1,
        help="A trigger sentence that elicits a model to execute chain of thought"
    )
    parser.add_argument("--dataset", type=str, default="")
    parser.add_argument("--data_path", type=str, default="")
    parser.add_argument("--evaluation_mode", type=str, default="")
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--eval_method", type=str, default="")

    parser.add_argument("--model_path", type=str, default="")

    parser.add_argument("--model_type", type=str, default="chatglm")

    parser.add_argument("--output_dir", type=str, default="generation_test")

    parser.add_argument("--lora_path", type=str, default="")

    parser.add_argument("--iter_num", type=int, default=1)
    parser.add_argument("--method", type=str, default="few_shot_cot")
    parser.add_argument("--data_question_key", type=str, default="question")
    parser.add_argument("--data_answer_key", type=str, default="answer")

    parser.add_argument("--prompt_key", type=str, default="qa")

    parser.add_argument("--sample_num", type=int, default=1)

    parser.add_argument("--cuda_ind", type=int, default=0)
    parser.add_argument("--tensor_parallel", type=int, default=1)
    parser.add_argument("--cuda_start", type=int, default=0)
    parser.add_argument("--cuda_num", type=int, default=8)

    parser.add_argument("--load_in_8bit", type=str2bool, default=False)
    parser.add_argument("--rewrite", type=str2bool, default=False)

    parser.add_argument("--use_typewriter", type=int, default=0)

    parser.add_argument("--temperature", type=float, default=0.0)
    parser.add_argument("--top_p", type=float, default=1)
    parser.add_argument("--iter_max_new_tokens", type=int, default=512)
    parser.add_argument("--init_max_new_tokens", type=int, default=2048)
    parser.add_argument("--min_new_tokens", type=int, default=1)
    parser.add_argument("--correct_response_format", type=str, default="The correct response is:")

    args = parser.parse_args()
    if args.evaluation_mode == 'generation':
        if "lean" in args.dataset:
            args.data_question_key = 'model_response'
            args.data_answer_key = 'statement_poof'

        if args.dataset == "lean4_5k_test":
            args.data_path = "data/lean4_gpt_5k/test/data.jsonl"
        elif args.dataset == "lean4_15k_train":
            args.data_path = "data/lean4_random/15k_filtered.json"

        elif args.dataset == "math_train":
            args.data_path = "autoform_data/qa_math_train.json"

        elif args.dataset == "gsm8k_train":
            args.data_path = "data/test/gsm8k/train.jsonl"
            
        elif args.dataset == "wild_test":
            args.data_path = "data/wild/wild_sample1k.jsonl"

        elif args.dataset == "lean4_basic_test":
            args.data_path = "data/lean4_basic/1k_test_filtered.jsonl"

        elif args.dataset == "lean4_random_test":
            args.data_path = "data/lean4_random/1k_test_filtered.json"

        elif args.dataset == "lean4_random_first_train":
            args.data_path = "data/lean4_random/5k_first.json"
        elif args.dataset == "lean4_random_second_train":
            args.data_path = "data/lean4_random/5k_second.json"
        elif args.dataset == "lean4_random_third_train":
            args.data_path = "data/lean4_random/5k_third.json"

        elif args.dataset == "minif2f_valid":
            args.data_path = "miniF2F-lean4/handle_minif2f_valid.jsonl"
            args.prompt_key = 'atp' 
            args.data_question_key = 'formal_statement'

        elif args.dataset == "minif2f_test":
            args.data_path = "miniF2F-lean4/handle_minif2f_test.jsonl"
            args.prompt_key = 'atp' 
            args.data_question_key = 'formal_statement'


    if args.model_type == 'mistral_generator':
        args.model_path = 'models/gsm8k/generators/mistral-ep2/'
    elif args.model_type == 'mistral_generator_original':
        args.model_path = '/data/OVM-Mistral-7b/mistral7b-ep2/'
    elif args.model_type == 'gemma_generator':
        args.model_path = 'models/gsm8k/generators/gemma2b2-ep2/'
    elif args.model_type == 'phi2_generator':
        args.model_path = 'models/gsm8k/generators/phi2b-ep2/'

    elif args.model_type == 'mixtral':
        args.model_path = '/data/Mixtral-8x7B-Instruct-v0.1'

    elif args.model_type == 'mistral':
        args.model_path = '/data/mistral-instruct'

    elif args.model_type == 'qianwen-70b':
        args.model_path = '/data/Qwen-72B-Chat'


    elif args.model_type == 'llama2-7b-chat':
        args.model_path = '/data/Llama-2-7b-chat/'

    elif args.model_type == 'deepseek-math-7b-base':
        args.model_path = '/data/models/deepseek-math-7b-base'
        
    elif args.model_type == 'deepseek-math-7b-instruct':
        args.model_path = '/data/models/deepseek-math-7b-instruct'

    elif args.model_type == 'llemma_7b':
        args.model_path = '/data/models/llemma_7b'
    elif args.model_type == 'llemma_34b':
        args.model_path = '/data/models/llemma_34b'
    elif args.model_type == 'internlm2-math-7b':
        args.model_path = '/data/models/internlm2-math-7b'
    elif args.model_type == 'internlm2-math-20b':
        args.model_path = '/data/models/internlm/internlm2-math-20b'

    elif args.model_type == 'Mistral-7B-Instruct-v0.2':
        args.model_path = '/data/models/Mistral-7B-Instruct-v0.2'

    if args.cot_trigger_no == 1:
        args.cot_trigger = "Let's think step by step."

    return args


def create_demo_text(args, cot_flag, index_list):
    # Concatenate demonstration examples ...
    demo_text = ""
    for i in index_list:
        item = few_shot_list[i]
        if cot_flag:
            demo_text += "Q: " + item['question'] + "\nA: " + item['answer'] + " " + \
                         args.direct_answer_trigger_for_fewshot + " " + item['direct_answer'] + ".\n\n"
        else:
            demo_text += "Q: " + item['question'] + "\nA: " + \
                         args.direct_answer_trigger_for_fewshot + " " + item['direct_answer'] + ".\n\n"

    return demo_text


def str2bool(s):
    s = s.lower()
    if s == 'true':
        return True
    elif s == 'false':
        return False
    else:
        raise ValueError('invalid value: {}, must be true or false'.format(s))


def batchify(pairs, batch_size):

    """将列表分成指定大小的批次"""
    for i in range(0, len(pairs), batch_size):
        yield pairs[i:i + batch_size]


def generate_prompts(questions, args):
    """为每个问题生成提示"""
    prompts = [generate_prompt_generation(args, question) for question in questions]
    return prompts

PROMPT_DICT = {
    "autoform": (
        "Question and answer in natural language:\n\n"
        "# Question:\n{question}\n\n"
        "# Answer:\n{answer}\n\n"
        "Translate the question and answer in natural language to lean4:"
    ),
    "qa": (
        "Answer the question in natural language:\n\n"
        "# Question:\n{question}\n\n"
        "# Answer:\n"
    ),
    "atp": (
        "Question and answer in natural language:\n\n"
        "# Question:\n{question}\n\n"
        "# Answer:\n{answer}\n\n"
        "Translate the question and answer in natural language to lean4:"
        "{statement}"
    ),
}
def get_question_answer(args):
    allfilepath = args.data_path
    questions = []
    answers = []

    # Attempt to read the file as a regular JSON file
    for filepath in allfilepath.split(','):
        try:
            with open(filepath, 'r') as file:
                data = json.load(file)
                # If the data is a list, assume it's an array of objects
                if isinstance(data, list):
                    for json_item in data:
                        answers.append(json_item)
                # If the data is a dict, assume it's a single object (or adjust logic as needed)
                elif isinstance(data, dict):
                    answers.append(json_item)

        except ValueError:
            # If it fails, assume the file is in JSON Lines format
            with open(filepath, 'r') as file:
                for line in file:
                    json_item = json.loads(line)
                    answers.append(json_item)

    if args.prompt_key == 'autoform':
        questions  = [ PROMPT_DICT['autoform'].format(question= answers[id]['informal_question'], answer =answers[id]['informal_answer'] )  for id in range(len(answers))]

    elif  args.prompt_key == 'qa':
        questions  = [ PROMPT_DICT['qa'].format(question= answers[id]['informal_question'])  for id in range(len(answers))]
    
    elif  args.prompt_key == 'atp':
        questions  = [ PROMPT_DICT['atp'].format(question= answers[id]['informal_stmt'] ,answer =answers[id]['informal_proof'], statement = re.sub(r'\bsorry\b', '', answers[id]['formal_statement'], flags=re.IGNORECASE) )  for id in range(len(answers))]
    else:
        raise ValueError(f'we do not implement the key of{args.prompt_key}')


    return questions, answers


def main3(args):
    from vllm import LLM, SamplingParams
    import torch

    model = LLM(model=args.model_path, dtype="bfloat16", trust_remote_code=True,
                tensor_parallel_size=args.tensor_parallel, gpu_memory_utilization = 0.95)
    print(args.model_path)

    if "qianwen" in args.model_type:
        model.llm_engine.tokenizer.eos_token_id = 151645
        # model.llm_engine.tokenizer.pad_token_id = 151645
        model.llm_engine.tokenizer.pad_token_id = None
        # model.llm_engine.tokenizer.eos_token_id = None


    print("load data")


    questions, answers = get_question_answer(args)



    question_exist_list = []
    write_pattern = 'w' if args.rewrite else "a+"
    if os.path.exists(args.output_dir) and not args.rewrite :
        # 如果文件存在,从文件中读取数据加载到response_list
        # Loop through each file that matches the pattern
        file_pattern = os.path.join(args.output_dir, '[0-9]*.json')
        for file_path in glob.glob(file_pattern):
            # Open and read the JSON file
            with open(file_path, 'r') as fp:
                # Extract the 'question' field from each line and add it to the list
                for line in fp.readlines():
                    question_exist_list.append(json.loads(line)['question'])
    else:
        try:
            os.mkdir(args.output_dir)
        except:
            pass
    qa_pairs = [(questions[idx], answers[idx]) for idx in range(len(questions)) if questions[idx] not in question_exist_list ]
    cuda_pieces = np.array_split(range(len(qa_pairs)), args.cuda_num // args.tensor_parallel)
    print(f"fitered {len(questions) - len(qa_pairs)} already")

    with open(f"{args.output_dir}/{args.cuda_ind // args.tensor_parallel + args.cuda_start}.json", write_pattern,
              encoding='utf-8') as wf:
        start = cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][0]
        end = cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][-1] + 1
        subset_length = end - start
        total_batches = (subset_length + args.batch_size - 1) // args.batch_size  # Calculate the total number of batches
        for batch in tqdm(batchify(qa_pairs[start:end], args.batch_size), total=total_batches):
            questions, answers = zip(*batch)  # 解压问题和答案
            prompts = generate_prompts(questions, args)

            with torch.no_grad():
                output_all = []
                try:
                    for i in range(args.sample_num):
                        sample_list = []
                        sampling_params = SamplingParams(temperature=args.temperature, top_p=args.top_p,
                                                         max_tokens=args.init_max_new_tokens)
                        generations = model.generate(prompts, sampling_params, use_tqdm=False)
                        for generation_output in generations:
                            output = generation_output.outputs[0].text
                            sample_list.append(output)
                        output_all.append(sample_list)

                    output_all = list(map(list, zip(*output_all)))
                except Exception as e:
                    print(str(e))
                    exit
                dicts = []
                for question, answer, output, prompt in zip(questions, answers, output_all, prompts):
                    dicts.append({
                        "question": question,
                        "prompt": prompt,
                        "content": answer,
                        "total output": output,
                    })

                for dict in dicts:
                    wf.writelines(json.dumps(dict, ensure_ascii=False) + '\n')

                wf.flush()


def main(argv=None):
    args = parse_arguments()
    print('*****************************')
    print(args)
    print('*****************************')
    if args.evaluation_mode == 'generation':
        main3(args)
    else:
        raise ValueError("we do not yet inplement")


if __name__ == "__main__":
    main()