rohn132 commited on
Commit
0552ccb
·
verified ·
1 Parent(s): d1c33e5

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +5 -45
README.md CHANGED
@@ -10,47 +10,7 @@ tags:
10
  - lora
11
  - template:sd-lora
12
  inference: true
13
- widget:
14
- - text: 'unconditional (blank prompt)'
15
- parameters:
16
- negative_prompt: 'blurry, cropped, ugly'
17
- output:
18
- url: ./assets/image_0_0.png
19
- - text: 'transparent objects on a table in low light'
20
- parameters:
21
- negative_prompt: 'blurry, cropped, ugly'
22
- output:
23
- url: ./assets/image_1_0.png
24
- - text: 'transparent objects on a table in bright light'
25
- parameters:
26
- negative_prompt: 'blurry, cropped, ugly'
27
- output:
28
- url: ./assets/image_2_0.png
29
- - text: 'transparent objects on a table on a table in the backyard'
30
- parameters:
31
- negative_prompt: 'blurry, cropped, ugly'
32
- output:
33
- url: ./assets/image_3_0.png
34
- - text: 'partially filled transaprent objects on a table'
35
- parameters:
36
- negative_prompt: 'blurry, cropped, ugly'
37
- output:
38
- url: ./assets/image_4_0.png
39
- - text: 'transparent objects between opaque objects on a table'
40
- parameters:
41
- negative_prompt: 'blurry, cropped, ugly'
42
- output:
43
- url: ./assets/image_5_0.png
44
- - text: 'transparent syringes on a table'
45
- parameters:
46
- negative_prompt: 'blurry, cropped, ugly'
47
- output:
48
- url: ./assets/image_6_0.png
49
- - text: 'ethnographic photography of teddy bear at a picnic'
50
- parameters:
51
- negative_prompt: 'blurry, cropped, ugly'
52
- output:
53
- url: ./assets/image_7_0.png
54
  ---
55
 
56
  # simpletuner-lora-flux-v2
@@ -63,7 +23,7 @@ The main validation prompt used during training was:
63
 
64
 
65
  ```
66
- ethnographic photography of teddy bear at a picnic
67
  ```
68
 
69
  ## Validation settings
@@ -76,7 +36,7 @@ ethnographic photography of teddy bear at a picnic
76
 
77
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
78
 
79
- You can find some example images in the following gallery:
80
 
81
 
82
  <Gallery />
@@ -88,7 +48,7 @@ You may reuse the base model text encoder for inference.
88
  ## Training settings
89
 
90
  - Training epochs: 0
91
- - Training steps: 39000
92
  - Learning rate: 8e-05
93
  - Effective batch size: 4
94
  - Micro-batch size: 1
@@ -130,7 +90,7 @@ adapter_id = 'rohn132/simpletuner-lora-flux-v2'
130
  pipeline = DiffusionPipeline.from_pretrained(model_id)
131
  pipeline.load_lora_weights(adapter_id)
132
 
133
- prompt = "ethnographic photography of teddy bear at a picnic"
134
 
135
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
136
  image = pipeline(
 
10
  - lora
11
  - template:sd-lora
12
  inference: true
13
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  # simpletuner-lora-flux-v2
 
23
 
24
 
25
  ```
26
+ transparent objects on a table
27
  ```
28
 
29
  ## Validation settings
 
36
 
37
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
38
 
39
+
40
 
41
 
42
  <Gallery />
 
48
  ## Training settings
49
 
50
  - Training epochs: 0
51
+ - Training steps: 39100
52
  - Learning rate: 8e-05
53
  - Effective batch size: 4
54
  - Micro-batch size: 1
 
90
  pipeline = DiffusionPipeline.from_pretrained(model_id)
91
  pipeline.load_lora_weights(adapter_id)
92
 
93
+ prompt = "transparent objects on a table"
94
 
95
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
96
  image = pipeline(