rohn132 commited on
Commit
4125085
·
1 Parent(s): a9fafc6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94957bd30ce707ce21ff1204d16dfa3e94a2e3cde2e3cfaf764c9e7a1f62f5c4
3
+ size 123091
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78668013e050>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x786680131340>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692990115773966800,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAE/E+vgjMhzyBU7o9rSSBv872qT/eW7o9j2EzvjDXbj/eW7o9k0hNP+c89L67YLo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbHw6vviJob+nLUS/iDBBv5eQtr/gnIi/U0LRv/XaF78a4bg/kkQpP+2Pvb+2e5o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAB8lyw/uCbRPTz0Bb6JV86+GrfQv/Qtub83W7M/E/E+vgjMhzyBU7o9DlVxu57Pdjo8pkm89RRKPDx5eLtcdiU9e/NIOScGiLwQ4Wy8NX8KPxx5KD/+sZY/bbJHPsKAHL8HB10/V7Uxv60kgb/O9qk/3lu6PWL3fruIC4U6xnstvJorVzyNzou7XHYlPcT8SDk4Boi8cu5fvBGmxj7I5LY/M71KvkiWAL/FQgU93/hDv0kZ0b6PYTO+MNduP95buj3i9n674wmFOno1I7xCK1c8Q86Lu1x2JT3B/Eg5OAaIvJ3vX7y6aWa9xtbUPrATV78uudg/Rz5vPx+cpz+1TIo/k0hNP+c89L67YLo9UvSEu3xGMTrkykm8vC1IPO9lYrsMlSY9ys/nugWEn7zmJG+8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.1864665 0.01657678 0.09097958]\n [-1.0089318 1.3278444 0.09099554]\n [-0.17517684 0.932971 0.09099554]\n [ 0.80188864 -0.47702715 0.09100481]]",
34
+ "desired_goal": "[[-0.18211526 -1.262023 -0.7663216 ]\n [-0.7546468 -1.4262875 -1.0672874 ]\n [-1.6348366 -0.59318477 1.4443696 ]\n [ 0.66120255 -1.4809548 1.2069004 ]]",
35
+ "observation": "[[ 6.7418647e-01 1.0212463e-01 -1.3081449e-01 -4.0301159e-01\n -1.6305878e+00 -1.4467149e+00 1.4012212e+00 -1.8646650e-01\n 1.6576782e-02 9.0979584e-02 -3.6824378e-03 9.4150926e-04\n -1.2307700e-02 1.2334098e-02 -3.7914058e-03 4.0396079e-02\n 1.9164190e-04 -1.6604496e-02 -1.4457956e-02]\n [ 5.4100353e-01 6.5809798e-01 1.1773069e+00 1.9501658e-01\n -6.1133969e-01 8.6338848e-01 -6.9417328e-01 -1.0089318e+00\n 1.3278444e+00 9.0995535e-02 -3.8904776e-03 1.0150531e-03\n -1.0588592e-02 1.3132954e-02 -4.2665661e-03 4.0396079e-02\n 1.9167649e-04 -1.6604528e-02 -1.3667690e-02]\n [ 3.8798574e-01 1.4288568e+00 -1.9798736e-01 -5.0229311e-01\n 3.2534380e-02 -7.6551622e-01 -4.0839604e-01 -1.7517684e-01\n 9.3297100e-01 9.0995535e-02 -3.8904478e-03 1.0150041e-03\n -9.9614803e-03 1.3132872e-02 -4.2665317e-03 4.0396079e-02\n 1.9167644e-04 -1.6604528e-02 -1.3667968e-02]\n [-5.6253172e-02 4.1570109e-01 -8.4014416e-01 1.6931512e+00\n 9.3454403e-01 1.3094519e+00 1.0804659e+00 8.0188864e-01\n -4.7702715e-01 9.1004811e-02 -4.0574456e-03 6.7625172e-04\n -1.2316439e-02 1.2217935e-02 -3.4545620e-03 4.0669486e-02\n -1.7685827e-03 -1.9472132e-02 -1.4596200e-02]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUzW/uw+WEr4K16M8VYWyPU/VU70K16M8C2HlvUXuPT0K16M8VccQPQ/nvL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWmzfPZ78sT0HlBU9Vd0+vdcBnb0K16M8BfQOPqhl3j15khI+2W9gvClXFjxCWk49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUzW/uw+WEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFWFsj1P1VO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAALYeW9Re49PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAVccQPQ/nvL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.00583521 -0.14315055 0.02 ]\n [ 0.08716837 -0.0517171 0.02 ]\n [-0.1120015 0.04636981 0.02 ]\n [ 0.03534635 -0.09223758 0.02 ]]",
45
+ "desired_goal": "[[ 0.10909338 0.08690761 0.03651812]\n [-0.0465978 -0.07666367 0.02 ]\n [ 0.13960274 0.10859233 0.14313687]\n [-0.01369854 0.00917605 0.05037905]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.8352142e-03\n -1.4315055e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 8.7168373e-02\n -5.1717099e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1200150e-01\n 4.6369810e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.5346348e-02\n -9.2237584e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnSBZq20AtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnR+AiFCb+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnR4HJT2nLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSH8SwnpjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSR2PtD2KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSObd8Aq/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSIpPZZjhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSZy1eBxxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSjxrBTGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSgdm6GxmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSaiDEm6YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSqqkl/pddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS02Dg62fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSxchs67vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSrepwS8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS8UqH447dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTGLNW2gGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTCxLkCFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS82nCO3ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTNivxH5KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTXqL876pdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnTX/qgRK6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTURwyZa3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTOqk/KQrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTenrIHTrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTo0cn3L3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTlG0eEIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTe/yGzrvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTvFvqC6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT5Pk7wKCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT1hkiD/VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTveTvAoHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT/f6wdKedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUJrLhaTwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUF+TFERbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUAFV94NadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUQs/pt78dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUbFI3BHkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUXYLb5/LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnURUyxiXqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUiCjcmBwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUsRmseXBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUokKmbb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUir2g398dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUzy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU+GRV6u5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU6cCPp6hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU0YACGN8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVK5sj3VTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVWr0J4SpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVTDgZTAGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVPJtrKvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVmRjawljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVx0N8VpLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVuJqASWadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVpW7OE/TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWALVnVXndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWMGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWIe10DEFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWEcRL9MsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWjSAH3UQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWwGLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWsjPWxyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWpJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXA1SGahIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXMHhKlHjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXIcry1/ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXDbkfcN6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXamOuJUHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXmGbsniOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXicGs3hodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXd4EwFkhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX180Ltu2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYBs0gr6MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX+DPWxyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX5LUb1h9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYJdRrJr+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYTtPYWcjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYP/sVtXQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYKKiwjdIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYZ8FpwjudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYkMUqQRxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYge8f3evdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYaWECeVcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYpvfj0cwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYz77TDwZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYwQEhaC+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYqa/qPfbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnY6h4dIXkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZFFEZzgddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZBYRmK64dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnY7pC8e0YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZL3Td+G5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZWEgGKQ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZSWki2UjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZMQZXMhYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZcKNZNfxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZmRXXAdodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZijbzshQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZchNdqtYdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2be7a4226754dd8c3d077cd5ce9ced1f244fc188b942099026e8e341b0b1adb
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e32275697ae800bcce3327138d237cc6096af049300b2ff1d1d2bf1f69b05018
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78668013e050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786680131340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692990115773966800, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAE/E+vgjMhzyBU7o9rSSBv872qT/eW7o9j2EzvjDXbj/eW7o9k0hNP+c89L67YLo9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbHw6vviJob+nLUS/iDBBv5eQtr/gnIi/U0LRv/XaF78a4bg/kkQpP+2Pvb+2e5o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAB8lyw/uCbRPTz0Bb6JV86+GrfQv/Qtub83W7M/E/E+vgjMhzyBU7o9DlVxu57Pdjo8pkm89RRKPDx5eLtcdiU9e/NIOScGiLwQ4Wy8NX8KPxx5KD/+sZY/bbJHPsKAHL8HB10/V7Uxv60kgb/O9qk/3lu6PWL3fruIC4U6xnstvJorVzyNzou7XHYlPcT8SDk4Boi8cu5fvBGmxj7I5LY/M71KvkiWAL/FQgU93/hDv0kZ0b6PYTO+MNduP95buj3i9n674wmFOno1I7xCK1c8Q86Lu1x2JT3B/Eg5OAaIvJ3vX7y6aWa9xtbUPrATV78uudg/Rz5vPx+cpz+1TIo/k0hNP+c89L67YLo9UvSEu3xGMTrkykm8vC1IPO9lYrsMlSY9ys/nugWEn7zmJG+8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.1864665 0.01657678 0.09097958]\n [-1.0089318 1.3278444 0.09099554]\n [-0.17517684 0.932971 0.09099554]\n [ 0.80188864 -0.47702715 0.09100481]]", "desired_goal": "[[-0.18211526 -1.262023 -0.7663216 ]\n [-0.7546468 -1.4262875 -1.0672874 ]\n [-1.6348366 -0.59318477 1.4443696 ]\n [ 0.66120255 -1.4809548 1.2069004 ]]", "observation": "[[ 6.7418647e-01 1.0212463e-01 -1.3081449e-01 -4.0301159e-01\n -1.6305878e+00 -1.4467149e+00 1.4012212e+00 -1.8646650e-01\n 1.6576782e-02 9.0979584e-02 -3.6824378e-03 9.4150926e-04\n -1.2307700e-02 1.2334098e-02 -3.7914058e-03 4.0396079e-02\n 1.9164190e-04 -1.6604496e-02 -1.4457956e-02]\n [ 5.4100353e-01 6.5809798e-01 1.1773069e+00 1.9501658e-01\n -6.1133969e-01 8.6338848e-01 -6.9417328e-01 -1.0089318e+00\n 1.3278444e+00 9.0995535e-02 -3.8904776e-03 1.0150531e-03\n -1.0588592e-02 1.3132954e-02 -4.2665661e-03 4.0396079e-02\n 1.9167649e-04 -1.6604528e-02 -1.3667690e-02]\n [ 3.8798574e-01 1.4288568e+00 -1.9798736e-01 -5.0229311e-01\n 3.2534380e-02 -7.6551622e-01 -4.0839604e-01 -1.7517684e-01\n 9.3297100e-01 9.0995535e-02 -3.8904478e-03 1.0150041e-03\n -9.9614803e-03 1.3132872e-02 -4.2665317e-03 4.0396079e-02\n 1.9167644e-04 -1.6604528e-02 -1.3667968e-02]\n [-5.6253172e-02 4.1570109e-01 -8.4014416e-01 1.6931512e+00\n 9.3454403e-01 1.3094519e+00 1.0804659e+00 8.0188864e-01\n -4.7702715e-01 9.1004811e-02 -4.0574456e-03 6.7625172e-04\n -1.2316439e-02 1.2217935e-02 -3.4545620e-03 4.0669486e-02\n -1.7685827e-03 -1.9472132e-02 -1.4596200e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUzW/uw+WEr4K16M8VYWyPU/VU70K16M8C2HlvUXuPT0K16M8VccQPQ/nvL0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWmzfPZ78sT0HlBU9Vd0+vdcBnb0K16M8BfQOPqhl3j15khI+2W9gvClXFjxCWk49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAUzW/uw+WEr4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAFWFsj1P1VO9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAALYeW9Re49PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAVccQPQ/nvL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00583521 -0.14315055 0.02 ]\n [ 0.08716837 -0.0517171 0.02 ]\n [-0.1120015 0.04636981 0.02 ]\n [ 0.03534635 -0.09223758 0.02 ]]", "desired_goal": "[[ 0.10909338 0.08690761 0.03651812]\n [-0.0465978 -0.07666367 0.02 ]\n [ 0.13960274 0.10859233 0.14313687]\n [-0.01369854 0.00917605 0.05037905]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.8352142e-03\n -1.4315055e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 8.7168373e-02\n -5.1717099e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1200150e-01\n 4.6369810e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 3.5346348e-02\n -9.2237584e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnSBZq20AtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnR+AiFCb+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnR4HJT2nLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSH8SwnpjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSR2PtD2KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSObd8Aq/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSIpPZZjhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSZy1eBxxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSjxrBTGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSgdm6GxmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSaiDEm6YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSqqkl/pddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS02Dg62fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSxchs67vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnSrepwS8KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS8UqH447dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTGLNW2gGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTCxLkCFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnS82nCO3ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTNivxH5KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTXqL876pdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnTX/qgRK6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTURwyZa3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTOqk/KQrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTenrIHTrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTo0cn3L3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTlG0eEIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTe/yGzrvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTvFvqC6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT5Pk7wKCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT1hkiD/VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnTveTvAoHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnT/f6wdKedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUJrLhaTwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUF+TFERbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUAFV94NadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUQs/pt78dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUbFI3BHkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUXYLb5/LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnURUyxiXqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUiCjcmBwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUsRmseXBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUokKmbb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUir2g398dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnUzy1NQCTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU+GRV6u5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU6cCPp6hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnU0YACGN8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVK5sj3VTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVWr0J4SpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVTDgZTAGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVPJtrKvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVmRjawljdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVx0N8VpLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVuJqASWadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnVpW7OE/TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWALVnVXndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWMGcOLBLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWIe10DEFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWEcRL9MsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWjSAH3UQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWwGLk0aZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWsjPWxyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnWpJoTPB0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXA1SGahIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXMHhKlHjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXIcry1/ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXDbkfcN6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXamOuJUHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXmGbsniOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXicGs3hodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnXd4EwFkhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX180Ltu2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYBs0gr6MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX+DPWxyGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnX5LUb1h9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYJdRrJr+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYTtPYWcjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYP/sVtXQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYKKiwjdIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYZ8FpwjudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYkMUqQRxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYge8f3evdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYaWECeVcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYpvfj0cwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYz77TDwZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYwQEhaC+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnYqa/qPfbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnY6h4dIXkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZFFEZzgddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZBYRmK64dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnY7pC8e0YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZL3Td+G5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZWEgGKQ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZSWki2UjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZMQZXMhYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZcKNZNfxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZmRXXAdodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZijbzshQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnZchNdqtYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (862 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-25T19:52:07.914477"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad5dcdd093dde673778319e594444dc276d60f50526efd1b2f84aa992cebe7d
3
+ size 3013