rodrigo-pedro commited on
Commit
6db1f48
·
verified ·
1 Parent(s): 848ca9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -169
README.md CHANGED
@@ -1,199 +1,96 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - hypervariance/function-calling-sharegpt
5
  ---
6
 
7
  # Model Card for Model ID
8
 
9
+ Gemma 2B function calling. [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) finetuned on [hypervariance/function-calling-sharegpt](https://huggingface.co/datasets/hypervariance/function-calling-sharegpt).
10
 
11
 
12
+ ## Usage
13
 
14
+ ```python
15
+ from transformers import AutoModelForCausalLM , AutoTokenizer
16
 
17
+ tokenizer = AutoTokenizer.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True)
18
+ model = AutoModelForCausalLM.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True, device_map="auto")
19
 
20
+ inputs = tokenizer(prompt,return_tensors="pt").to(model.device)
21
 
22
+ outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
23
 
24
+ print(tokenizer.decode(outputs[0]))
25
+ ```
 
 
 
 
 
26
 
27
+ You can also use sharegpt formatted prompts:
28
 
29
+ ```python
30
+ from transformers import AutoModelForCausalLM , AutoTokenizer
31
 
32
+ tokenizer = AutoTokenizer.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True)
33
+ model = AutoModelForCausalLM.from_pretrained("rodrigo-pedro/gemma-2b-function-calling", trust_remote_code=True, device_map="auto")
 
34
 
35
+ chat = [
36
+ {
37
+ "from": "system",
38
+ "value": "SYSTEM PROMPT",
39
+ },
40
+ {
41
+ "from": "human",
42
+ "value": "USER QUESTION"
43
+ },
44
+ ]
45
 
46
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
47
 
48
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
49
 
50
+ outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
51
 
52
+ print(tokenizer.decode(outputs[0]))
53
+ ```
54
 
55
+ ## Prompt template
56
 
57
+ ```text
58
+ You are a helpful assistant with access to the following functions. Use them if required -
59
+ {
60
+ "name": "function name",
61
+ "description": "function description",
62
+ "parameters": {
63
+ "type": "type (object/number/string)",
64
+ "properties": {
65
+ "property_1": {
66
+ "type": "type",
67
+ "description": "property description"
68
+ }
69
+ },
70
+ "required": [
71
+ "property_1"
72
+ ]
73
+ }
74
+ }
75
 
76
+ To use these functions respond with:
77
+ <functioncall> {"name": "function_name", "arguments": {"arg_1": "value_1", "arg_1": "value_1", ...}} </functioncall>
78
 
79
+ Edge cases you must handle:
80
+ - If there are no functions that match the user request, you will respond politely that you cannot help.
81
 
82
+ User Question:
83
+ USER_QUESTION
84
+ ```
85
 
86
+ Function calls are enclosed in `<functioncall>` `</functioncall>`.
87
 
88
+ The model was trained using the same delimiters as [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it):
89
 
90
+ ```text
91
+ <bos><start_of_turn>user
92
+ Write a hello world program<end_of_turn>
93
+ <start_of_turn>model
94
+ ```
95
 
96
+ Use `<end_of_turn>` stop sequence to prevent the model from generating further text.