Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- Unit_1_Lunar_Lander_robsoneng.zip +3 -0
- Unit_1_Lunar_Lander_robsoneng/_stable_baselines3_version +1 -0
- Unit_1_Lunar_Lander_robsoneng/data +95 -0
- Unit_1_Lunar_Lander_robsoneng/policy.optimizer.pth +3 -0
- Unit_1_Lunar_Lander_robsoneng/policy.pth +3 -0
- Unit_1_Lunar_Lander_robsoneng/pytorch_variables.pth +3 -0
- Unit_1_Lunar_Lander_robsoneng/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.85 +/- 18.37
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
Unit_1_Lunar_Lander_robsoneng.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e6d46bbc2b928f36c3a76a29eb77df4e2b28eff0d29154cf9ee9c6b7c9df1e0
|
3 |
+
size 147420
|
Unit_1_Lunar_Lander_robsoneng/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
Unit_1_Lunar_Lander_robsoneng/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5694e38b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5694e38c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5694e38ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5694e38d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5694e38dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5694e38e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5694e38ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5694e38f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5694dbc040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5694dbc0d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5694dbc160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5694dbc1f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5694e39270>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675973454512288738,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaAybxc4226nW/YOmKYpzWRuL46isX9uQAAgD8AAIA/Zsbcvdjarz+Dbra+IWyJvidoQb4ywUm+AAAAAAAAAABmps85peqsPxbQoTttg4a+cWr2vFudbb0AAAAAAAAAAM0szTquNZm6K4Dsun9eA7ZGVoU6nqcIOgAAgD8AAIA/TX4NvVzHR7oIdWy6VeaetWUoDDvW7Yo5AACAPwAAgD/ze5c9j4J7usgO4DnFHKq15WQXu7pkm7QAAIA/AACAP7NUcj1SCMO5ho6+tk8JtTFZ5PI67V7gNQAAgD8AAIA/Zgg7PFyfWrrbw1+6VXT/s+fcZ7sagoA5AACAPwAAgD+NFb89w+l1uk2vEDVk8vkvhffVOhLaZLQAAAAAAACAP1PtSz5ssvc+u0UWPW1Vvb4RHBY+Hc5GvQAAAAAAAAAATbdNvSftrD/Tcs2+Fk6rvpv/Cr1pjkq+AAAAAAAAAAAAU5c9w7l7uv/zpztm8gE14153uioGwroAAIA/AACAP2Zm0Luu95G6ZH+KO1ZPEDhPCSe7ZcOWtwAAgD8AAIA/MzQ2PY8OX7q7wla6qYkdtuyPXju2cXw5AACAPwAAgD8A4+Q89tRbug3yF7s8y1u11DuZOqrKMjoAAIA/AACAP825tD179pG6VedzujOIRLagSeU5EoGNOQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2/y/6sjNZkCUhpRSlIwBbJRN6AOMAXSUR0CUKYHOryUcdX2UKGgGaAloD0MIbjSAt0DJXUCUhpRSlGgVTegDaBZHQJQq3TjNpud1fZQoaAZoCWgPQwhS0Vj7u7FhQJSGlFKUaBVN6ANoFkdAlCr6LGaQWHV9lChoBmgJaA9DCEWA07t4Bl9AlIaUUpRoFU3oA2gWR0CUNV5ooNNKdX2UKGgGaAloD0MI9UnusAkHYkCUhpRSlGgVTegDaBZHQJQ5f0oScsl1fZQoaAZoCWgPQwhWf4RhwM1jQJSGlFKUaBVN6ANoFkdAlDphWPtD2XV9lChoBmgJaA9DCFpLAWl/TmRAlIaUUpRoFU3oA2gWR0CUQ6N2ki2VdX2UKGgGaAloD0MI3uNMEzZTYkCUhpRSlGgVTegDaBZHQJRGFzuF6Ax1fZQoaAZoCWgPQwjK4Ch5dXdkQJSGlFKUaBVN6ANoFkdAlG+r8FY+0XV9lChoBmgJaA9DCFzK+WJvUG9AlIaUUpRoFU2FA2gWR0CUcjx4ptrLdX2UKGgGaAloD0MILei9MQTib0CUhpRSlGgVTUsBaBZHQJR066DoQnR1fZQoaAZoCWgPQwjfNehL78hiQJSGlFKUaBVN6ANoFkdAlHWS0rsjV3V9lChoBmgJaA9DCAPS/gdYaGVAlIaUUpRoFU3oA2gWR0CUgXND+irUdX2UKGgGaAloD0MIa39ne3SDYECUhpRSlGgVTegDaBZHQJSEKG5+Ytx1fZQoaAZoCWgPQwjk84qnHkFjQJSGlFKUaBVN6ANoFkdAlIVsrqdH2HV9lChoBmgJaA9DCDQRNjy9CjhAlIaUUpRoFUv9aBZHQJSG4HAymAN1fZQoaAZoCWgPQwgCZr6DH5diQJSGlFKUaBVN6ANoFkdAlIcktmL9/HV9lChoBmgJaA9DCN53DI/94DlAlIaUUpRoFU0DAWgWR0CUiJC9ytFKdX2UKGgGaAloD0MIaVGf5A6qXkCUhpRSlGgVTegDaBZHQJSM19JBgNR1fZQoaAZoCWgPQwi8sDVb+XFhQJSGlFKUaBVN6ANoFkdAlI9tVJcxCnV9lChoBmgJaA9DCFJkraHUJkhAlIaUUpRoFUvraBZHQJSQ255JK8N1fZQoaAZoCWgPQwiRup19ZSJgQJSGlFKUaBVN6ANoFkdAlJDsvh60IHV9lChoBmgJaA9DCFmnyvcMDGhAlIaUUpRoFU3oA2gWR0CUkQnIhhYvdX2UKGgGaAloD0MINjtSfWckZkCUhpRSlGgVTegDaBZHQJSYLcBU70Z1fZQoaAZoCWgPQwjD1mzlJV1eQJSGlFKUaBVN6ANoFkdAlJreGGmDUXV9lChoBmgJaA9DCKt2TUjrgGJAlIaUUpRoFU3oA2gWR0CUm29nbqQjdX2UKGgGaAloD0MIJ2iTwyfqZkCUhpRSlGgVTegDaBZHQJSkX6WPcSJ1fZQoaAZoCWgPQwj6t8t+3eNmQJSGlFKUaBVN6ANoFkdAlNPZAyEcsHV9lChoBmgJaA9DCJ9zt+ul+2RAlIaUUpRoFU3oA2gWR0CU1EBGQSzxdX2UKGgGaAloD0MIj6m7soszZECUhpRSlGgVTegDaBZHQJTftktmL+B1fZQoaAZoCWgPQwgG1QYnIjZlQJSGlFKUaBVN6ANoFkdAlOC0HlfZ3HV9lChoBmgJaA9DCCKrWz2nyWJAlIaUUpRoFU3oA2gWR0CU4oy925hCdX2UKGgGaAloD0MIQx8sY8OIY0CUhpRSlGgVTegDaBZHQJTi6yTpxFR1fZQoaAZoCWgPQwj6l6QyRdpmQJSGlFKUaBVN6ANoFkdAlOTgz+FUQ3V9lChoBmgJaA9DCN6Th4Xa3GNAlIaUUpRoFU3oA2gWR0CU6lWjoIOZdX2UKGgGaAloD0MIfjfdssM/ZECUhpRSlGgVTegDaBZHQJTtm32EkB11fZQoaAZoCWgPQwgcs+xJYN5gQJSGlFKUaBVN6ANoFkdAlO9saXKKYXV9lChoBmgJaA9DCOm4GtmVDmFAlIaUUpRoFU3oA2gWR0CU74Uaya/idX2UKGgGaAloD0MI+ROVDeueYkCUhpRSlGgVTegDaBZHQJTvqVPepGZ1fZQoaAZoCWgPQwgEVaNXA+taQJSGlFKUaBVN6ANoFkdAlPh1HBk7OnV9lChoBmgJaA9DCD85ChCFlWFAlIaUUpRoFU3oA2gWR0CU+0TTvy9VdX2UKGgGaAloD0MIhNTt7Ku0YECUhpRSlGgVTegDaBZHQJT75fiPyTZ1fZQoaAZoCWgPQwhFSx5Pyz5iQJSGlFKUaBVN6ANoFkdAlQUhnWattHV9lChoBmgJaA9DCARxHk5gGghAlIaUUpRoFU0nAWgWR0CVDBK+i8FqdX2UKGgGaAloD0MIRpkNMokHcECUhpRSlGgVTUICaBZHQJUpoUlAu7J1fZQoaAZoCWgPQwhHOZhNAONnQJSGlFKUaBVN6ANoFkdAlTPdi+cpb3V9lChoBmgJaA9DCP3dO2rMFWZAlIaUUpRoFU3oA2gWR0CVNEH3UQTVdX2UKGgGaAloD0MIcSAkC5jzZECUhpRSlGgVTegDaBZHQJVAPBk7Oml1fZQoaAZoCWgPQwh3EaYolzBjQJSGlFKUaBVN6ANoFkdAlUFh9oexOnV9lChoBmgJaA9DCB+5Nek2iWNAlIaUUpRoFU3oA2gWR0CVQu+cH4XXdX2UKGgGaAloD0MINgadEDoBX0CUhpRSlGgVTegDaBZHQJVDMzeoDPp1fZQoaAZoCWgPQwgOpItNq0VgQJSGlFKUaBVN6ANoFkdAlUTAYP5HmXV9lChoBmgJaA9DCPSkTGroj2RAlIaUUpRoFU3oA2gWR0CVS+up0fYBdX2UKGgGaAloD0MIweYcPJMqYUCUhpRSlGgVTegDaBZHQJVNYtTUAkt1fZQoaAZoCWgPQwhW1GAahjJgQJSGlFKUaBVN6ANoFkdAlU129YfW+XV9lChoBmgJaA9DCB2PGaiMY2BAlIaUUpRoFU3oA2gWR0CVTZPaL4vfdX2UKGgGaAloD0MI14o2x7ngY0CUhpRSlGgVTegDaBZHQJVX3gGbCrN1fZQoaAZoCWgPQwjTg4JSNO1lQJSGlFKUaBVN6ANoFkdAlVh+QuEmIHV9lChoBmgJaA9DCEG5bd+jJFBAlIaUUpRoFUvYaBZHQJVa8Irvsqt1fZQoaAZoCWgPQwi0Hykiw5ZkQJSGlFKUaBVN6ANoFkdAlWXUNvwVkHV9lChoBmgJaA9DCKvpeqLrYERAlIaUUpRoFUvzaBZHQJVuCVbA1vV1fZQoaAZoCWgPQwisVib80j9lQJSGlFKUaBVN6ANoFkdAlW50wnH/+HV9lChoBmgJaA9DCAA3ixeLTmJAlIaUUpRoFU3oA2gWR0CVc/UVi4KAdX2UKGgGaAloD0MIbLQc6CHGZkCUhpRSlGgVTegDaBZHQJWPI6T4cm11fZQoaAZoCWgPQwgv3/qw3udeQJSGlFKUaBVN6ANoFkdAlY99fw7T2HV9lChoBmgJaA9DCNNPOLu1ll9AlIaUUpRoFU3oA2gWR0CVnWpPhybQdX2UKGgGaAloD0MISBrc1papZ0CUhpRSlGgVTegDaBZHQJWfBNN8E3d1fZQoaAZoCWgPQwiQ9GkV/eZjQJSGlFKUaBVN6ANoFkdAlaERjz7MxHV9lChoBmgJaA9DCPRwAtPp6WBAlIaUUpRoFU3oA2gWR0CVoXA3T/hmdX2UKGgGaAloD0MID9WUZJ3bZUCUhpRSlGgVTegDaBZHQJWjTD3ueBh1fZQoaAZoCWgPQwheZ0P+GQtuQJSGlFKUaBVNaAFoFkdAlaQCdJ8OTnV9lChoBmgJaA9DCKmgoupX8l9AlIaUUpRoFU3oA2gWR0CVqxkQf6oEdX2UKGgGaAloD0MIaAWGrG7DYUCUhpRSlGgVTegDaBZHQJWsSsNlRP51fZQoaAZoCWgPQwigbqDAu0FnQJSGlFKUaBVN6ANoFkdAlaxzsdDIBHV9lChoBmgJaA9DCA9h/DTu4mtAlIaUUpRoFU1YAmgWR0CVrZ9ZRsMzdX2UKGgGaAloD0MI0QK0rWa+YkCUhpRSlGgVTegDaBZHQJW1/eEZiux1fZQoaAZoCWgPQwgcJa/O8ZByQJSGlFKUaBVNAQNoFkdAlbYcneBQN3V9lChoBmgJaA9DCOKuXkXGqWVAlIaUUpRoFU3oA2gWR0CVt4fHggoxdX2UKGgGaAloD0MIsoUgB6XIYkCUhpRSlGgVTegDaBZHQJW+g9IPK+11fZQoaAZoCWgPQwjJycStArtvQJSGlFKUaBVNUgJoFkdAled0GZ/kNnV9lChoBmgJaA9DCJbnwd3ZqmFAlIaUUpRoFU3oA2gWR0CV60U5dWyUdX2UKGgGaAloD0MI5Gcj182HZECUhpRSlGgVTegDaBZHQJXrlV7x/d91fZQoaAZoCWgPQwg17s1v2BJxQJSGlFKUaBVNRwNoFkdAlevU+1SflXV9lChoBmgJaA9DCLU2je01A3BAlIaUUpRoFU0yA2gWR0CV7oIMjNY9dX2UKGgGaAloD0MIQDBHj58NckCUhpRSlGgVTTMDaBZHQJXvFyhi9Zl1fZQoaAZoCWgPQwg6WtWSDglyQJSGlFKUaBVNagFoFkdAle81z6rNn3V9lChoBmgJaA9DCDY+k/1zzWdAlIaUUpRoFU3oA2gWR0CV9g3MINVjdX2UKGgGaAloD0MIRDaQLrYMYkCUhpRSlGgVTegDaBZHQJX3PJuEVWV1fZQoaAZoCWgPQwglQbgCioVjQJSGlFKUaBVN6ANoFkdAlfdwZsKsuHV9lChoBmgJaA9DCMIWu31WX2ZAlIaUUpRoFU3oA2gWR0CWAIFDOTq0dX2UKGgGaAloD0MIjSeCOI+jYECUhpRSlGgVTegDaBZHQJYAsfzSThZ1fZQoaAZoCWgPQwjn49pQMYVlQJSGlFKUaBVN6ANoFkdAlgI59E1EVnV9lChoBmgJaA9DCPD3i9mSxTBAlIaUUpRoFUu+aBZHQJYCWL0jC551fZQoaAZoCWgPQwjM1CR4w3xiQJSGlFKUaBVN6ANoFkdAlgxjDKoybnV9lChoBmgJaA9DCFuWr8twymZAlIaUUpRoFU3oA2gWR0CWDJfcer+6dX2UKGgGaAloD0MI4PQu3o+sZ0CUhpRSlGgVTegDaBZHQJYOrE/B3zN1fZQoaAZoCWgPQwjovwevnXhwQJSGlFKUaBVNiwJoFkdAliSauB+WnnV9lChoBmgJaA9DCNB8zt1uV3BAlIaUUpRoFU1wAWgWR0CWKy2/BWPtdX2UKGgGaAloD0MIjsni/iMAZkCUhpRSlGgVTegDaBZHQJYsH2dupCN1fZQoaAZoCWgPQwjT9UTXhSRtQJSGlFKUaBVNewNoFkdAlixVMIu5BnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
Unit_1_Lunar_Lander_robsoneng/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d8b8c594c6c24f6e9b4d6dad276d17a9647fc96f880f2c2d6f90943115ec5e6
|
3 |
+
size 87929
|
Unit_1_Lunar_Lander_robsoneng/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fe911986b1e42f3e9e92cbbaf7c885b799fa77fad55c0a9e1ba59cde19031c4
|
3 |
+
size 43393
|
Unit_1_Lunar_Lander_robsoneng/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Unit_1_Lunar_Lander_robsoneng/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5694e38b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5694e38c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5694e38ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5694e38d30>", "_build": "<function ActorCriticPolicy._build at 0x7f5694e38dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5694e38e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5694e38ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5694e38f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5694dbc040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5694dbc0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5694dbc160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5694dbc1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5694e39270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675973454512288738, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaAybxc4226nW/YOmKYpzWRuL46isX9uQAAgD8AAIA/Zsbcvdjarz+Dbra+IWyJvidoQb4ywUm+AAAAAAAAAABmps85peqsPxbQoTttg4a+cWr2vFudbb0AAAAAAAAAAM0szTquNZm6K4Dsun9eA7ZGVoU6nqcIOgAAgD8AAIA/TX4NvVzHR7oIdWy6VeaetWUoDDvW7Yo5AACAPwAAgD/ze5c9j4J7usgO4DnFHKq15WQXu7pkm7QAAIA/AACAP7NUcj1SCMO5ho6+tk8JtTFZ5PI67V7gNQAAgD8AAIA/Zgg7PFyfWrrbw1+6VXT/s+fcZ7sagoA5AACAPwAAgD+NFb89w+l1uk2vEDVk8vkvhffVOhLaZLQAAAAAAACAP1PtSz5ssvc+u0UWPW1Vvb4RHBY+Hc5GvQAAAAAAAAAATbdNvSftrD/Tcs2+Fk6rvpv/Cr1pjkq+AAAAAAAAAAAAU5c9w7l7uv/zpztm8gE14153uioGwroAAIA/AACAP2Zm0Luu95G6ZH+KO1ZPEDhPCSe7ZcOWtwAAgD8AAIA/MzQ2PY8OX7q7wla6qYkdtuyPXju2cXw5AACAPwAAgD8A4+Q89tRbug3yF7s8y1u11DuZOqrKMjoAAIA/AACAP825tD179pG6VedzujOIRLagSeU5EoGNOQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2/y/6sjNZkCUhpRSlIwBbJRN6AOMAXSUR0CUKYHOryUcdX2UKGgGaAloD0MIbjSAt0DJXUCUhpRSlGgVTegDaBZHQJQq3TjNpud1fZQoaAZoCWgPQwhS0Vj7u7FhQJSGlFKUaBVN6ANoFkdAlCr6LGaQWHV9lChoBmgJaA9DCEWA07t4Bl9AlIaUUpRoFU3oA2gWR0CUNV5ooNNKdX2UKGgGaAloD0MI9UnusAkHYkCUhpRSlGgVTegDaBZHQJQ5f0oScsl1fZQoaAZoCWgPQwhWf4RhwM1jQJSGlFKUaBVN6ANoFkdAlDphWPtD2XV9lChoBmgJaA9DCFpLAWl/TmRAlIaUUpRoFU3oA2gWR0CUQ6N2ki2VdX2UKGgGaAloD0MI3uNMEzZTYkCUhpRSlGgVTegDaBZHQJRGFzuF6Ax1fZQoaAZoCWgPQwjK4Ch5dXdkQJSGlFKUaBVN6ANoFkdAlG+r8FY+0XV9lChoBmgJaA9DCFzK+WJvUG9AlIaUUpRoFU2FA2gWR0CUcjx4ptrLdX2UKGgGaAloD0MILei9MQTib0CUhpRSlGgVTUsBaBZHQJR066DoQnR1fZQoaAZoCWgPQwjfNehL78hiQJSGlFKUaBVN6ANoFkdAlHWS0rsjV3V9lChoBmgJaA9DCAPS/gdYaGVAlIaUUpRoFU3oA2gWR0CUgXND+irUdX2UKGgGaAloD0MIa39ne3SDYECUhpRSlGgVTegDaBZHQJSEKG5+Ytx1fZQoaAZoCWgPQwjk84qnHkFjQJSGlFKUaBVN6ANoFkdAlIVsrqdH2HV9lChoBmgJaA9DCDQRNjy9CjhAlIaUUpRoFUv9aBZHQJSG4HAymAN1fZQoaAZoCWgPQwgCZr6DH5diQJSGlFKUaBVN6ANoFkdAlIcktmL9/HV9lChoBmgJaA9DCN53DI/94DlAlIaUUpRoFU0DAWgWR0CUiJC9ytFKdX2UKGgGaAloD0MIaVGf5A6qXkCUhpRSlGgVTegDaBZHQJSM19JBgNR1fZQoaAZoCWgPQwi8sDVb+XFhQJSGlFKUaBVN6ANoFkdAlI9tVJcxCnV9lChoBmgJaA9DCFJkraHUJkhAlIaUUpRoFUvraBZHQJSQ255JK8N1fZQoaAZoCWgPQwiRup19ZSJgQJSGlFKUaBVN6ANoFkdAlJDsvh60IHV9lChoBmgJaA9DCFmnyvcMDGhAlIaUUpRoFU3oA2gWR0CUkQnIhhYvdX2UKGgGaAloD0MINjtSfWckZkCUhpRSlGgVTegDaBZHQJSYLcBU70Z1fZQoaAZoCWgPQwjD1mzlJV1eQJSGlFKUaBVN6ANoFkdAlJreGGmDUXV9lChoBmgJaA9DCKt2TUjrgGJAlIaUUpRoFU3oA2gWR0CUm29nbqQjdX2UKGgGaAloD0MIJ2iTwyfqZkCUhpRSlGgVTegDaBZHQJSkX6WPcSJ1fZQoaAZoCWgPQwj6t8t+3eNmQJSGlFKUaBVN6ANoFkdAlNPZAyEcsHV9lChoBmgJaA9DCJ9zt+ul+2RAlIaUUpRoFU3oA2gWR0CU1EBGQSzxdX2UKGgGaAloD0MIj6m7soszZECUhpRSlGgVTegDaBZHQJTftktmL+B1fZQoaAZoCWgPQwgG1QYnIjZlQJSGlFKUaBVN6ANoFkdAlOC0HlfZ3HV9lChoBmgJaA9DCCKrWz2nyWJAlIaUUpRoFU3oA2gWR0CU4oy925hCdX2UKGgGaAloD0MIQx8sY8OIY0CUhpRSlGgVTegDaBZHQJTi6yTpxFR1fZQoaAZoCWgPQwj6l6QyRdpmQJSGlFKUaBVN6ANoFkdAlOTgz+FUQ3V9lChoBmgJaA9DCN6Th4Xa3GNAlIaUUpRoFU3oA2gWR0CU6lWjoIOZdX2UKGgGaAloD0MIfjfdssM/ZECUhpRSlGgVTegDaBZHQJTtm32EkB11fZQoaAZoCWgPQwgcs+xJYN5gQJSGlFKUaBVN6ANoFkdAlO9saXKKYXV9lChoBmgJaA9DCOm4GtmVDmFAlIaUUpRoFU3oA2gWR0CU74Uaya/idX2UKGgGaAloD0MI+ROVDeueYkCUhpRSlGgVTegDaBZHQJTvqVPepGZ1fZQoaAZoCWgPQwgEVaNXA+taQJSGlFKUaBVN6ANoFkdAlPh1HBk7OnV9lChoBmgJaA9DCD85ChCFlWFAlIaUUpRoFU3oA2gWR0CU+0TTvy9VdX2UKGgGaAloD0MIhNTt7Ku0YECUhpRSlGgVTegDaBZHQJT75fiPyTZ1fZQoaAZoCWgPQwhFSx5Pyz5iQJSGlFKUaBVN6ANoFkdAlQUhnWattHV9lChoBmgJaA9DCARxHk5gGghAlIaUUpRoFU0nAWgWR0CVDBK+i8FqdX2UKGgGaAloD0MIRpkNMokHcECUhpRSlGgVTUICaBZHQJUpoUlAu7J1fZQoaAZoCWgPQwhHOZhNAONnQJSGlFKUaBVN6ANoFkdAlTPdi+cpb3V9lChoBmgJaA9DCP3dO2rMFWZAlIaUUpRoFU3oA2gWR0CVNEH3UQTVdX2UKGgGaAloD0MIcSAkC5jzZECUhpRSlGgVTegDaBZHQJVAPBk7Oml1fZQoaAZoCWgPQwh3EaYolzBjQJSGlFKUaBVN6ANoFkdAlUFh9oexOnV9lChoBmgJaA9DCB+5Nek2iWNAlIaUUpRoFU3oA2gWR0CVQu+cH4XXdX2UKGgGaAloD0MINgadEDoBX0CUhpRSlGgVTegDaBZHQJVDMzeoDPp1fZQoaAZoCWgPQwgOpItNq0VgQJSGlFKUaBVN6ANoFkdAlUTAYP5HmXV9lChoBmgJaA9DCPSkTGroj2RAlIaUUpRoFU3oA2gWR0CVS+up0fYBdX2UKGgGaAloD0MIweYcPJMqYUCUhpRSlGgVTegDaBZHQJVNYtTUAkt1fZQoaAZoCWgPQwhW1GAahjJgQJSGlFKUaBVN6ANoFkdAlU129YfW+XV9lChoBmgJaA9DCB2PGaiMY2BAlIaUUpRoFU3oA2gWR0CVTZPaL4vfdX2UKGgGaAloD0MI14o2x7ngY0CUhpRSlGgVTegDaBZHQJVX3gGbCrN1fZQoaAZoCWgPQwjTg4JSNO1lQJSGlFKUaBVN6ANoFkdAlVh+QuEmIHV9lChoBmgJaA9DCEG5bd+jJFBAlIaUUpRoFUvYaBZHQJVa8Irvsqt1fZQoaAZoCWgPQwi0Hykiw5ZkQJSGlFKUaBVN6ANoFkdAlWXUNvwVkHV9lChoBmgJaA9DCKvpeqLrYERAlIaUUpRoFUvzaBZHQJVuCVbA1vV1fZQoaAZoCWgPQwisVib80j9lQJSGlFKUaBVN6ANoFkdAlW50wnH/+HV9lChoBmgJaA9DCAA3ixeLTmJAlIaUUpRoFU3oA2gWR0CVc/UVi4KAdX2UKGgGaAloD0MIbLQc6CHGZkCUhpRSlGgVTegDaBZHQJWPI6T4cm11fZQoaAZoCWgPQwgv3/qw3udeQJSGlFKUaBVN6ANoFkdAlY99fw7T2HV9lChoBmgJaA9DCNNPOLu1ll9AlIaUUpRoFU3oA2gWR0CVnWpPhybQdX2UKGgGaAloD0MISBrc1papZ0CUhpRSlGgVTegDaBZHQJWfBNN8E3d1fZQoaAZoCWgPQwiQ9GkV/eZjQJSGlFKUaBVN6ANoFkdAlaERjz7MxHV9lChoBmgJaA9DCPRwAtPp6WBAlIaUUpRoFU3oA2gWR0CVoXA3T/hmdX2UKGgGaAloD0MID9WUZJ3bZUCUhpRSlGgVTegDaBZHQJWjTD3ueBh1fZQoaAZoCWgPQwheZ0P+GQtuQJSGlFKUaBVNaAFoFkdAlaQCdJ8OTnV9lChoBmgJaA9DCKmgoupX8l9AlIaUUpRoFU3oA2gWR0CVqxkQf6oEdX2UKGgGaAloD0MIaAWGrG7DYUCUhpRSlGgVTegDaBZHQJWsSsNlRP51fZQoaAZoCWgPQwigbqDAu0FnQJSGlFKUaBVN6ANoFkdAlaxzsdDIBHV9lChoBmgJaA9DCA9h/DTu4mtAlIaUUpRoFU1YAmgWR0CVrZ9ZRsMzdX2UKGgGaAloD0MI0QK0rWa+YkCUhpRSlGgVTegDaBZHQJW1/eEZiux1fZQoaAZoCWgPQwgcJa/O8ZByQJSGlFKUaBVNAQNoFkdAlbYcneBQN3V9lChoBmgJaA9DCOKuXkXGqWVAlIaUUpRoFU3oA2gWR0CVt4fHggoxdX2UKGgGaAloD0MIsoUgB6XIYkCUhpRSlGgVTegDaBZHQJW+g9IPK+11fZQoaAZoCWgPQwjJycStArtvQJSGlFKUaBVNUgJoFkdAled0GZ/kNnV9lChoBmgJaA9DCJbnwd3ZqmFAlIaUUpRoFU3oA2gWR0CV60U5dWyUdX2UKGgGaAloD0MI5Gcj182HZECUhpRSlGgVTegDaBZHQJXrlV7x/d91fZQoaAZoCWgPQwg17s1v2BJxQJSGlFKUaBVNRwNoFkdAlevU+1SflXV9lChoBmgJaA9DCLU2je01A3BAlIaUUpRoFU0yA2gWR0CV7oIMjNY9dX2UKGgGaAloD0MIQDBHj58NckCUhpRSlGgVTTMDaBZHQJXvFyhi9Zl1fZQoaAZoCWgPQwg6WtWSDglyQJSGlFKUaBVNagFoFkdAle81z6rNn3V9lChoBmgJaA9DCDY+k/1zzWdAlIaUUpRoFU3oA2gWR0CV9g3MINVjdX2UKGgGaAloD0MIRDaQLrYMYkCUhpRSlGgVTegDaBZHQJX3PJuEVWV1fZQoaAZoCWgPQwglQbgCioVjQJSGlFKUaBVN6ANoFkdAlfdwZsKsuHV9lChoBmgJaA9DCMIWu31WX2ZAlIaUUpRoFU3oA2gWR0CWAIFDOTq0dX2UKGgGaAloD0MIjSeCOI+jYECUhpRSlGgVTegDaBZHQJYAsfzSThZ1fZQoaAZoCWgPQwjn49pQMYVlQJSGlFKUaBVN6ANoFkdAlgI59E1EVnV9lChoBmgJaA9DCPD3i9mSxTBAlIaUUpRoFUu+aBZHQJYCWL0jC551fZQoaAZoCWgPQwjM1CR4w3xiQJSGlFKUaBVN6ANoFkdAlgxjDKoybnV9lChoBmgJaA9DCFuWr8twymZAlIaUUpRoFU3oA2gWR0CWDJfcer+6dX2UKGgGaAloD0MI4PQu3o+sZ0CUhpRSlGgVTegDaBZHQJYOrE/B3zN1fZQoaAZoCWgPQwjovwevnXhwQJSGlFKUaBVNiwJoFkdAliSauB+WnnV9lChoBmgJaA9DCNB8zt1uV3BAlIaUUpRoFU1wAWgWR0CWKy2/BWPtdX2UKGgGaAloD0MIjsni/iMAZkCUhpRSlGgVTegDaBZHQJYsH2dupCN1fZQoaAZoCWgPQwjT9UTXhSRtQJSGlFKUaBVNewNoFkdAlixVMIu5BnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (249 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.85000302168845, "std_reward": 18.36982020942396, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T20:35:34.075092"}
|