robotman0 commited on
Commit
9150183
1 Parent(s): 2b140db

default params for 1 million timesteps. reposted

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 277.06 +/- 16.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f523dd14160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f523dd141f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f523dd14280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f523dd14310>", "_build": "<function ActorCriticPolicy._build at 0x7f523dd143a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f523dd14430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f523dd144c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f523dd14550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f523dd145e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f523dd14670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f523dd14700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f523dd14790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f523dd0e810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670956415107810284, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2Qj2P5kS6Iw6BuW0TZrRHVLm64a+YOAAAgD8AAIA/pj9dPhlYoj+wVxg/dzUAv2b4iD4uNX8+AAAAAAAAAADaTk2+AeT7vNWsVryfkN662zZgPip9zzsAAIA/AACAP01PMz7DPXm8r3EQPH7XeLp4rtq9UeRIuwAAgD8AAIA/YLeCPizlsD4bo7K+ToGwvlN0szxMJzC+AAAAAAAAAADNbEy8SImRuiqmQzMLUPOuyAwou9IP0bMAAIA/AACAP03mT734gJw9iZouvRdXGL5taA69nfDVvAAAAAAAAAAADRsRvr4G1T5+EwK8l+UCv1y8b725/6g8AAAAAAAAAAC1+I++V36uPk3fMz55Ruu+ls0Avm8uEj0AAAAAAAAAAACFQr6hYau8zgtpu62zxbnY9BQ+pf6WOgAAgD8AAIA/MDJ2vl3zpD57R3E9hBHgvrp/NL5LiJQ6AAAAAAAAAABGJti+eOwVP0pmBj6OWRK/E4tnvntouT0AAAAAAAAAAObKHD32iSE9VUeBvoPOVr6vMJO9KsNXPAAAAAAAAAAAyt2yvqhb1z7O3Yw9ShIZv3XwtL6Ian4+AAAAAAAAAABALkO+To/evGYarLtet2O6wyhNPloULTsAAIA/AACAP7Ptur2Psjm6wXQcuNNvwbc9w9K7mh5gNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI19081eHucUCUhpRSlIwBbJRL24wBdJRHQJnzu+cpb2V1fZQoaAZoCWgPQwhTliGONU5zQJSGlFKUaBVN7gFoFkdAmfRAaR6ni3V9lChoBmgJaA9DCIGxvoGJhnFAlIaUUpRoFUuzaBZHQJn0bqxC6Yp1fZQoaAZoCWgPQwiuKCUEq8FxQJSGlFKUaBVLyWgWR0CZ9LYGdI5HdX2UKGgGaAloD0MIVg3C3G4fckCUhpRSlGgVS+BoFkdAmfTGdNFjNXV9lChoBmgJaA9DCLvRx3wAfHJAlIaUUpRoFU0zAWgWR0CZ9h8Aq/dqdX2UKGgGaAloD0MI3qzB+6qXbUCUhpRSlGgVS8ZoFkdAmfchyOq//XV9lChoBmgJaA9DCKdAZmdRRXFAlIaUUpRoFUusaBZHQJn3Lu0CzTp1fZQoaAZoCWgPQwgCm3PwzJ5xQJSGlFKUaBVL42gWR0CZ91ysCDEndX2UKGgGaAloD0MIaTum7sodZkCUhpRSlGgVTegDaBZHQJn4VeqrBCV1fZQoaAZoCWgPQwg83XniuRpkQJSGlFKUaBVN6ANoFkdAmfiVh9b5dnV9lChoBmgJaA9DCCYZOQs7+HFAlIaUUpRoFUvnaBZHQJn4kCQtBfN1fZQoaAZoCWgPQwhCrz+JDy5wQJSGlFKUaBVL1mgWR0CZ+LrbQC0XdX2UKGgGaAloD0MILJs5JDWBcUCUhpRSlGgVS71oFkdAmflXssxwhnV9lChoBmgJaA9DCAxaSMBohm9AlIaUUpRoFUvSaBZHQJn5ZB1LamJ1fZQoaAZoCWgPQwgIILWJ0wJwQJSGlFKUaBVLu2gWR0CZ+btqpLmIdX2UKGgGaAloD0MI/FbrxGUeckCUhpRSlGgVS+RoFkdAmfqqwt8NQXV9lChoBmgJaA9DCEYjn1e8zG9AlIaUUpRoFUvFaBZHQJn7N4Y77sR1fZQoaAZoCWgPQwhf8GlOXsJyQJSGlFKUaBVNCgFoFkdAmftexfOUuHV9lChoBmgJaA9DCI/HDFTG+HFAlIaUUpRoFUviaBZHQJn897laKUF1fZQoaAZoCWgPQwgLKNTTx8ZxQJSGlFKUaBVLsGgWR0CZ/PcebNKRdX2UKGgGaAloD0MIryR5rq+lckCUhpRSlGgVS/BoFkdAmf1k6o2n9HV9lChoBmgJaA9DCNKKbyg86XFAlIaUUpRoFUvsaBZHQJn9cW/JvHd1fZQoaAZoCWgPQwhFuwopv0NxQJSGlFKUaBVLwGgWR0CZ/lf029+PdX2UKGgGaAloD0MIRMGMKVhGcUCUhpRSlGgVS+VoFkdAmf6beEZiu3V9lChoBmgJaA9DCK5H4XrUOHRAlIaUUpRoFUv3aBZHQJn+rwMH8j11fZQoaAZoCWgPQwifru5YrPJzQJSGlFKUaBVL1GgWR0CZ/tntOVPfdX2UKGgGaAloD0MIkfP+P44qdECUhpRSlGgVS+JoFkdAmf+xdld1MnV9lChoBmgJaA9DCACrI0e643BAlIaUUpRoFUuzaBZHQJoAD/CIk7h1fZQoaAZoCWgPQwh7vfvj/RBzQJSGlFKUaBVL5GgWR0CaAM4jKPn0dX2UKGgGaAloD0MI18HB3kSKY0CUhpRSlGgVTegDaBZHQJoBd52Qnx91fZQoaAZoCWgPQwhwfO2ZJaZxQJSGlFKUaBVL5WgWR0CaAZYO2AoYdX2UKGgGaAloD0MIVDntKflfcECUhpRSlGgVS8JoFkdAmgKfq1PWQXV9lChoBmgJaA9DCBMLfEV3EXFAlIaUUpRoFUvNaBZHQJoC/446wMZ1fZQoaAZoCWgPQwh6GFqd3BVwQJSGlFKUaBVL8WgWR0CaA5Hww0wbdX2UKGgGaAloD0MICcVW0DSHcECUhpRSlGgVS9hoFkdAmgSeaKDTSnV9lChoBmgJaA9DCCZw626eF3JAlIaUUpRoFUviaBZHQJoEqkwevIR1fZQoaAZoCWgPQwiwG7YtSlFwQJSGlFKUaBVL1WgWR0CaBNF1B+nZdX2UKGgGaAloD0MIrOEi97QAdECUhpRSlGgVS91oFkdAmgTbZzxPPHV9lChoBmgJaA9DCJuRQe4ilW1AlIaUUpRoFUvEaBZHQJoFkiFCb+d1fZQoaAZoCWgPQwh4R8ZqM+lwQJSGlFKUaBVL0mgWR0CaBZTVDrqudX2UKGgGaAloD0MIrWnecUpYcECUhpRSlGgVS7loFkdAmgX9tEXtSnV9lChoBmgJaA9DCFKY9ziTGXFAlIaUUpRoFUu3aBZHQJoGn17IDHR1fZQoaAZoCWgPQwgb1H5rp/NkQJSGlFKUaBVN6ANoFkdAmgbymqHXVnV9lChoBmgJaA9DCGjon+Diy3FAlIaUUpRoFUvRaBZHQJoIlo371qZ1fZQoaAZoCWgPQwgfhIB8yQxyQJSGlFKUaBVL32gWR0CaCVtyPuG9dX2UKGgGaAloD0MIiXlW0grAcECUhpRSlGgVS6ZoFkdAmglyMPz4DnV9lChoBmgJaA9DCKLsLeX8K3FAlIaUUpRoFUvUaBZHQJoJk7r9l3B1fZQoaAZoCWgPQwhqatlaH3pzQJSGlFKUaBVLvWgWR0CaCetb9qDcdX2UKGgGaAloD0MI+3PRkDG3cECUhpRSlGgVS8hoFkdAmgpz9CNS63V9lChoBmgJaA9DCK7xmexffnFAlIaUUpRoFU1CAWgWR0CaCrBC2MKkdX2UKGgGaAloD0MIL90kBoFKYUCUhpRSlGgVTegDaBZHQJoL1UBGQS11fZQoaAZoCWgPQwi4j9yaNJFyQJSGlFKUaBVL42gWR0CaDAgqEvkBdX2UKGgGaAloD0MIxOv6BTtVbkCUhpRSlGgVS9hoFkdAmgwxG6PKdXV9lChoBmgJaA9DCJULlX/tKHJAlIaUUpRoFUv0aBZHQJoMi3QUpNN1fZQoaAZoCWgPQwgdBB2t6mVuQJSGlFKUaBVL0GgWR0CaDJYU34sVdX2UKGgGaAloD0MIvVXXodpKcUCUhpRSlGgVTVMBaBZHQJoOPSiM5wR1fZQoaAZoCWgPQwg/WMaGLjtwQJSGlFKUaBVLzmgWR0CaD1WDYh+wdX2UKGgGaAloD0MITS1b6wvpckCUhpRSlGgVS8toFkdAmg/hRAKOUHV9lChoBmgJaA9DCHOh8q/lunFAlIaUUpRoFUvqaBZHQJoQfgTAWSF1fZQoaAZoCWgPQwgykdJsXgpyQJSGlFKUaBVNBwFoFkdAmhFDijtXxXV9lChoBmgJaA9DCCjwTj690nBAlIaUUpRoFUvcaBZHQJoRSfxtpEh1fZQoaAZoCWgPQwis4/ihUtFtQJSGlFKUaBVLyWgWR0CaEeZ2pyZKdX2UKGgGaAloD0MIEvkupS6vcUCUhpRSlGgVS8VoFkdAmhIllCkXUHV9lChoBmgJaA9DCFkXt9FAGnBAlIaUUpRoFUu6aBZHQJoSOuTzNEB1fZQoaAZoCWgPQwhv1XWopm9xQJSGlFKUaBVL3mgWR0CaErmQbMoudX2UKGgGaAloD0MIhNbDl8k0ckCUhpRSlGgVS9RoFkdAmhLzOHFglXV9lChoBmgJaA9DCH4bYrzmy2JAlIaUUpRoFU3oA2gWR0CaFLVeruIAdX2UKGgGaAloD0MIk+NO6WBKc0CUhpRSlGgVS+1oFkdAmhWUBwMpgHV9lChoBmgJaA9DCG6hKxHoCHFAlIaUUpRoFUvRaBZHQJoV0f0VafV1fZQoaAZoCWgPQwgBUTBjCm1xQJSGlFKUaBVL3GgWR0CaFqnQY1pCdX2UKGgGaAloD0MI6dFUT6bQcECUhpRSlGgVS85oFkdAmheVMmF8HHV9lChoBmgJaA9DCEHYKVbNQHNAlIaUUpRoFUu+aBZHQJoYE02tMf11fZQoaAZoCWgPQwhsWikEMrdxQJSGlFKUaBVL5mgWR0CaGGf/3nIRdX2UKGgGaAloD0MItvP91Hh3cUCUhpRSlGgVS7ZoFkdAmhihL9MsYnV9lChoBmgJaA9DCN6ul6ZI4XFAlIaUUpRoFUvRaBZHQJoZQKUmlZZ1fZQoaAZoCWgPQwgCSkONQmtzQJSGlFKUaBVL/WgWR0CaGgpSJj2BdX2UKGgGaAloD0MIoN/3b96LZECUhpRSlGgVTegDaBZHQJoaT7Kq4pd1fZQoaAZoCWgPQwiaeXJNQe9xQJSGlFKUaBVL9GgWR0CaHIZof0VadX2UKGgGaAloD0MITN4AM1+abkCUhpRSlGgVS9hoFkdAmhzPFrEcbXV9lChoBmgJaA9DCAd7E0MyaHJAlIaUUpRoFUvGaBZHQJodIUWVNYd1fZQoaAZoCWgPQwhtWb4uQ/VxQJSGlFKUaBVLrWgWR0CaHUU5MlC1dX2UKGgGaAloD0MIKlWi7G1JcUCUhpRSlGgVS79oFkdAmh5TaoMrmXV9lChoBmgJaA9DCOOqsu+KBHRAlIaUUpRoFU0UAWgWR0CaHoUrkKeDdX2UKGgGaAloD0MI+1qXGiF5b0CUhpRSlGgVS8JoFkdAmh68lsxfwHV9lChoBmgJaA9DCOLK2TvjsHBAlIaUUpRoFUvOaBZHQJofZREWqLl1fZQoaAZoCWgPQwgPttjts2JvQJSGlFKUaBVLvWgWR0CaIE8tf5UMdX2UKGgGaAloD0MILGfvjLZqcECUhpRSlGgVS91oFkdAmiCQ0sOG03V9lChoBmgJaA9DCBHfiVlvyHBAlIaUUpRoFUuwaBZHQJoiuP7vXsh1fZQoaAZoCWgPQwhDcjJxq6pyQJSGlFKUaBVL/WgWR0CaIsBJI1+BdX2UKGgGaAloD0MIfXcrSzQecECUhpRSlGgVS7xoFkdAmiLgXZXdTHV9lChoBmgJaA9DCH44SIhyaG9AlIaUUpRoFUvaaBZHQJokpg/keZJ1fZQoaAZoCWgPQwisOqsFdmFzQJSGlFKUaBVL2mgWR0CaJM9jPOY6dX2UKGgGaAloD0MILPNWXQcccECUhpRSlGgVS9ZoFkdAmiXnyNGViXV9lChoBmgJaA9DCOIgIcoXo3JAlIaUUpRoFUu8aBZHQJomIbwSamZ1fZQoaAZoCWgPQwjYgAhxZfhxQJSGlFKUaBVL1GgWR0CaJlFvAGjcdX2UKGgGaAloD0MITyDsFKsXcUCUhpRSlGgVS99oFkdAmiZ6HfuTinV9lChoBmgJaA9DCA+dnnfjAGFAlIaUUpRoFU3oA2gWR0CaJrliz9jxdX2UKGgGaAloD0MIyAbSxabtTUCUhpRSlGgVS3poFkdAmic2Nm16V3V9lChoBmgJaA9DCCbfbHNjfmFAlIaUUpRoFU3oA2gWR0CaKMZ88cMmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTQtZmRhYTA4ZTUwNzI1PpSMCDxsYW1iZGE+lEsPQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 277.0569745650478, "std_reward": 16.931117815677535, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T18:22:54.319212"}
robotman0-unit1-lunarlander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e0ad38295fcf3741326195669b416340bdcad48d71395765988beed8d5d7a9
3
+ size 147092
robotman0-unit1-lunarlander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
robotman0-unit1-lunarlander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f523dd14160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f523dd141f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f523dd14280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f523dd14310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f523dd143a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f523dd14430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f523dd144c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f523dd14550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f523dd145e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f523dd14670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f523dd14700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f523dd14790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f523dd0e810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1670956415107810284,
52
+ "learning_rate": 0.0,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2Qj2P5kS6Iw6BuW0TZrRHVLm64a+YOAAAgD8AAIA/pj9dPhlYoj+wVxg/dzUAv2b4iD4uNX8+AAAAAAAAAADaTk2+AeT7vNWsVryfkN662zZgPip9zzsAAIA/AACAP01PMz7DPXm8r3EQPH7XeLp4rtq9UeRIuwAAgD8AAIA/YLeCPizlsD4bo7K+ToGwvlN0szxMJzC+AAAAAAAAAADNbEy8SImRuiqmQzMLUPOuyAwou9IP0bMAAIA/AACAP03mT734gJw9iZouvRdXGL5taA69nfDVvAAAAAAAAAAADRsRvr4G1T5+EwK8l+UCv1y8b725/6g8AAAAAAAAAAC1+I++V36uPk3fMz55Ruu+ls0Avm8uEj0AAAAAAAAAAACFQr6hYau8zgtpu62zxbnY9BQ+pf6WOgAAgD8AAIA/MDJ2vl3zpD57R3E9hBHgvrp/NL5LiJQ6AAAAAAAAAABGJti+eOwVP0pmBj6OWRK/E4tnvntouT0AAAAAAAAAAObKHD32iSE9VUeBvoPOVr6vMJO9KsNXPAAAAAAAAAAAyt2yvqhb1z7O3Yw9ShIZv3XwtL6Ian4+AAAAAAAAAABALkO+To/evGYarLtet2O6wyhNPloULTsAAIA/AACAP7Ptur2Psjm6wXQcuNNvwbc9w9K7mh5gNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVLRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI19081eHucUCUhpRSlIwBbJRL24wBdJRHQJnzu+cpb2V1fZQoaAZoCWgPQwhTliGONU5zQJSGlFKUaBVN7gFoFkdAmfRAaR6ni3V9lChoBmgJaA9DCIGxvoGJhnFAlIaUUpRoFUuzaBZHQJn0bqxC6Yp1fZQoaAZoCWgPQwiuKCUEq8FxQJSGlFKUaBVLyWgWR0CZ9LYGdI5HdX2UKGgGaAloD0MIVg3C3G4fckCUhpRSlGgVS+BoFkdAmfTGdNFjNXV9lChoBmgJaA9DCLvRx3wAfHJAlIaUUpRoFU0zAWgWR0CZ9h8Aq/dqdX2UKGgGaAloD0MI3qzB+6qXbUCUhpRSlGgVS8ZoFkdAmfchyOq//XV9lChoBmgJaA9DCKdAZmdRRXFAlIaUUpRoFUusaBZHQJn3Lu0CzTp1fZQoaAZoCWgPQwgCm3PwzJ5xQJSGlFKUaBVL42gWR0CZ91ysCDEndX2UKGgGaAloD0MIaTum7sodZkCUhpRSlGgVTegDaBZHQJn4VeqrBCV1fZQoaAZoCWgPQwg83XniuRpkQJSGlFKUaBVN6ANoFkdAmfiVh9b5dnV9lChoBmgJaA9DCCYZOQs7+HFAlIaUUpRoFUvnaBZHQJn4kCQtBfN1fZQoaAZoCWgPQwhCrz+JDy5wQJSGlFKUaBVL1mgWR0CZ+LrbQC0XdX2UKGgGaAloD0MILJs5JDWBcUCUhpRSlGgVS71oFkdAmflXssxwhnV9lChoBmgJaA9DCAxaSMBohm9AlIaUUpRoFUvSaBZHQJn5ZB1LamJ1fZQoaAZoCWgPQwgIILWJ0wJwQJSGlFKUaBVLu2gWR0CZ+btqpLmIdX2UKGgGaAloD0MI/FbrxGUeckCUhpRSlGgVS+RoFkdAmfqqwt8NQXV9lChoBmgJaA9DCEYjn1e8zG9AlIaUUpRoFUvFaBZHQJn7N4Y77sR1fZQoaAZoCWgPQwhf8GlOXsJyQJSGlFKUaBVNCgFoFkdAmftexfOUuHV9lChoBmgJaA9DCI/HDFTG+HFAlIaUUpRoFUviaBZHQJn897laKUF1fZQoaAZoCWgPQwgLKNTTx8ZxQJSGlFKUaBVLsGgWR0CZ/PcebNKRdX2UKGgGaAloD0MIryR5rq+lckCUhpRSlGgVS/BoFkdAmf1k6o2n9HV9lChoBmgJaA9DCNKKbyg86XFAlIaUUpRoFUvsaBZHQJn9cW/JvHd1fZQoaAZoCWgPQwhFuwopv0NxQJSGlFKUaBVLwGgWR0CZ/lf029+PdX2UKGgGaAloD0MIRMGMKVhGcUCUhpRSlGgVS+VoFkdAmf6beEZiu3V9lChoBmgJaA9DCK5H4XrUOHRAlIaUUpRoFUv3aBZHQJn+rwMH8j11fZQoaAZoCWgPQwifru5YrPJzQJSGlFKUaBVL1GgWR0CZ/tntOVPfdX2UKGgGaAloD0MIkfP+P44qdECUhpRSlGgVS+JoFkdAmf+xdld1MnV9lChoBmgJaA9DCACrI0e643BAlIaUUpRoFUuzaBZHQJoAD/CIk7h1fZQoaAZoCWgPQwh7vfvj/RBzQJSGlFKUaBVL5GgWR0CaAM4jKPn0dX2UKGgGaAloD0MI18HB3kSKY0CUhpRSlGgVTegDaBZHQJoBd52Qnx91fZQoaAZoCWgPQwhwfO2ZJaZxQJSGlFKUaBVL5WgWR0CaAZYO2AoYdX2UKGgGaAloD0MIVDntKflfcECUhpRSlGgVS8JoFkdAmgKfq1PWQXV9lChoBmgJaA9DCBMLfEV3EXFAlIaUUpRoFUvNaBZHQJoC/446wMZ1fZQoaAZoCWgPQwh6GFqd3BVwQJSGlFKUaBVL8WgWR0CaA5Hww0wbdX2UKGgGaAloD0MICcVW0DSHcECUhpRSlGgVS9hoFkdAmgSeaKDTSnV9lChoBmgJaA9DCCZw626eF3JAlIaUUpRoFUviaBZHQJoEqkwevIR1fZQoaAZoCWgPQwiwG7YtSlFwQJSGlFKUaBVL1WgWR0CaBNF1B+nZdX2UKGgGaAloD0MIrOEi97QAdECUhpRSlGgVS91oFkdAmgTbZzxPPHV9lChoBmgJaA9DCJuRQe4ilW1AlIaUUpRoFUvEaBZHQJoFkiFCb+d1fZQoaAZoCWgPQwh4R8ZqM+lwQJSGlFKUaBVL0mgWR0CaBZTVDrqudX2UKGgGaAloD0MIrWnecUpYcECUhpRSlGgVS7loFkdAmgX9tEXtSnV9lChoBmgJaA9DCFKY9ziTGXFAlIaUUpRoFUu3aBZHQJoGn17IDHR1fZQoaAZoCWgPQwgb1H5rp/NkQJSGlFKUaBVN6ANoFkdAmgbymqHXVnV9lChoBmgJaA9DCGjon+Diy3FAlIaUUpRoFUvRaBZHQJoIlo371qZ1fZQoaAZoCWgPQwgfhIB8yQxyQJSGlFKUaBVL32gWR0CaCVtyPuG9dX2UKGgGaAloD0MIiXlW0grAcECUhpRSlGgVS6ZoFkdAmglyMPz4DnV9lChoBmgJaA9DCKLsLeX8K3FAlIaUUpRoFUvUaBZHQJoJk7r9l3B1fZQoaAZoCWgPQwhqatlaH3pzQJSGlFKUaBVLvWgWR0CaCetb9qDcdX2UKGgGaAloD0MI+3PRkDG3cECUhpRSlGgVS8hoFkdAmgpz9CNS63V9lChoBmgJaA9DCK7xmexffnFAlIaUUpRoFU1CAWgWR0CaCrBC2MKkdX2UKGgGaAloD0MIL90kBoFKYUCUhpRSlGgVTegDaBZHQJoL1UBGQS11fZQoaAZoCWgPQwi4j9yaNJFyQJSGlFKUaBVL42gWR0CaDAgqEvkBdX2UKGgGaAloD0MIxOv6BTtVbkCUhpRSlGgVS9hoFkdAmgwxG6PKdXV9lChoBmgJaA9DCJULlX/tKHJAlIaUUpRoFUv0aBZHQJoMi3QUpNN1fZQoaAZoCWgPQwgdBB2t6mVuQJSGlFKUaBVL0GgWR0CaDJYU34sVdX2UKGgGaAloD0MIvVXXodpKcUCUhpRSlGgVTVMBaBZHQJoOPSiM5wR1fZQoaAZoCWgPQwg/WMaGLjtwQJSGlFKUaBVLzmgWR0CaD1WDYh+wdX2UKGgGaAloD0MITS1b6wvpckCUhpRSlGgVS8toFkdAmg/hRAKOUHV9lChoBmgJaA9DCHOh8q/lunFAlIaUUpRoFUvqaBZHQJoQfgTAWSF1fZQoaAZoCWgPQwgykdJsXgpyQJSGlFKUaBVNBwFoFkdAmhFDijtXxXV9lChoBmgJaA9DCCjwTj690nBAlIaUUpRoFUvcaBZHQJoRSfxtpEh1fZQoaAZoCWgPQwis4/ihUtFtQJSGlFKUaBVLyWgWR0CaEeZ2pyZKdX2UKGgGaAloD0MIEvkupS6vcUCUhpRSlGgVS8VoFkdAmhIllCkXUHV9lChoBmgJaA9DCFkXt9FAGnBAlIaUUpRoFUu6aBZHQJoSOuTzNEB1fZQoaAZoCWgPQwhv1XWopm9xQJSGlFKUaBVL3mgWR0CaErmQbMoudX2UKGgGaAloD0MIhNbDl8k0ckCUhpRSlGgVS9RoFkdAmhLzOHFglXV9lChoBmgJaA9DCH4bYrzmy2JAlIaUUpRoFU3oA2gWR0CaFLVeruIAdX2UKGgGaAloD0MIk+NO6WBKc0CUhpRSlGgVS+1oFkdAmhWUBwMpgHV9lChoBmgJaA9DCG6hKxHoCHFAlIaUUpRoFUvRaBZHQJoV0f0VafV1fZQoaAZoCWgPQwgBUTBjCm1xQJSGlFKUaBVL3GgWR0CaFqnQY1pCdX2UKGgGaAloD0MI6dFUT6bQcECUhpRSlGgVS85oFkdAmheVMmF8HHV9lChoBmgJaA9DCEHYKVbNQHNAlIaUUpRoFUu+aBZHQJoYE02tMf11fZQoaAZoCWgPQwhsWikEMrdxQJSGlFKUaBVL5mgWR0CaGGf/3nIRdX2UKGgGaAloD0MItvP91Hh3cUCUhpRSlGgVS7ZoFkdAmhihL9MsYnV9lChoBmgJaA9DCN6ul6ZI4XFAlIaUUpRoFUvRaBZHQJoZQKUmlZZ1fZQoaAZoCWgPQwgCSkONQmtzQJSGlFKUaBVL/WgWR0CaGgpSJj2BdX2UKGgGaAloD0MIoN/3b96LZECUhpRSlGgVTegDaBZHQJoaT7Kq4pd1fZQoaAZoCWgPQwiaeXJNQe9xQJSGlFKUaBVL9GgWR0CaHIZof0VadX2UKGgGaAloD0MITN4AM1+abkCUhpRSlGgVS9hoFkdAmhzPFrEcbXV9lChoBmgJaA9DCAd7E0MyaHJAlIaUUpRoFUvGaBZHQJodIUWVNYd1fZQoaAZoCWgPQwhtWb4uQ/VxQJSGlFKUaBVLrWgWR0CaHUU5MlC1dX2UKGgGaAloD0MIKlWi7G1JcUCUhpRSlGgVS79oFkdAmh5TaoMrmXV9lChoBmgJaA9DCOOqsu+KBHRAlIaUUpRoFU0UAWgWR0CaHoUrkKeDdX2UKGgGaAloD0MI+1qXGiF5b0CUhpRSlGgVS8JoFkdAmh68lsxfwHV9lChoBmgJaA9DCOLK2TvjsHBAlIaUUpRoFUvOaBZHQJofZREWqLl1fZQoaAZoCWgPQwgPttjts2JvQJSGlFKUaBVLvWgWR0CaIE8tf5UMdX2UKGgGaAloD0MILGfvjLZqcECUhpRSlGgVS91oFkdAmiCQ0sOG03V9lChoBmgJaA9DCBHfiVlvyHBAlIaUUpRoFUuwaBZHQJoiuP7vXsh1fZQoaAZoCWgPQwhDcjJxq6pyQJSGlFKUaBVL/WgWR0CaIsBJI1+BdX2UKGgGaAloD0MIfXcrSzQecECUhpRSlGgVS7xoFkdAmiLgXZXdTHV9lChoBmgJaA9DCH44SIhyaG9AlIaUUpRoFUvaaBZHQJokpg/keZJ1fZQoaAZoCWgPQwisOqsFdmFzQJSGlFKUaBVL2mgWR0CaJM9jPOY6dX2UKGgGaAloD0MILPNWXQcccECUhpRSlGgVS9ZoFkdAmiXnyNGViXV9lChoBmgJaA9DCOIgIcoXo3JAlIaUUpRoFUu8aBZHQJomIbwSamZ1fZQoaAZoCWgPQwjYgAhxZfhxQJSGlFKUaBVL1GgWR0CaJlFvAGjcdX2UKGgGaAloD0MITyDsFKsXcUCUhpRSlGgVS99oFkdAmiZ6HfuTinV9lChoBmgJaA9DCA+dnnfjAGFAlIaUUpRoFU3oA2gWR0CaJrliz9jxdX2UKGgGaAloD0MIyAbSxabtTUCUhpRSlGgVS3poFkdAmic2Nm16V3V9lChoBmgJaA9DCCbfbHNjfmFAlIaUUpRoFU3oA2gWR0CaKMZ88cMmdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTQtZmRhYTA4ZTUwNzI1PpSMCDxsYW1iZGE+lEsPQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
robotman0-unit1-lunarlander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b8f99d2fccdd2cba1acd41586da960cced234af3ff2e1a9b17db40a83de759
3
+ size 88057
robotman0-unit1-lunarlander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a0684d5979228dd417cc6e6d76d57c57e0315ccf04d277b2720a48d37e7480
3
+ size 43393
robotman0-unit1-lunarlander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
robotman0-unit1-lunarlander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0