Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1296.76 +/- 221.92
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25ecb049082d7a44a542ad4e7945eb9847396f0a04787470ccfd7816a0af621a
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f695632ad30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695632adc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695632ae50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695632aee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f695632af70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f695632d040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f695632d0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695632d160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f695632d1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695632d280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695632d310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695632d3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f69563267b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675187382927833119,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC+BgDwXGuG/Uvjdv2op3D4FQ9i/KVO/P4fMj73B0PO+DzCCvzl5Cz/Hf08/mx8cPmnykD/PQza+v+EtP1xWGL9+lWw+9Gmivq2arD2Gn16+OqQEv6bHZD9CCiu/nzupvxqLNT/kqsQ+na4RP570jb/1n6s/GENJv0SSpD6qeyq/u7Kov8uq/b/ZZzS/hhWLvyTT2j5W8Le/eh71P9nW/r9uVHi/bqFYPw0WJT4KYL694nSpv0XK5z+x1x4/wzyKQN/PXr8vlRo+zG8JPvcmPEAaizU/5KrEPprt4L+e9I2/S4QFP0O1E7+O2ug+qWw+v6b6bb8hQ5o+Tr9Gvh1AOb+TVNC/m/CYPUU3Gz46RWHAuwQ2v59kuT+mdGA+bK3zPnXXwj5xwXBAffZEP1G9sTwIKhy/XHoPQIL8qj+lpzo/L3+0v+SqxD6a7eC/NdVmP3cMEL1DXN2/XYG2v8xNSDta2Y2/pZcdP2DQkD4bFey+DdcHPyzKTL5fYtg++yW3v288lr9UtUQ8LlKvvfOYrz8Npd6/hnYIPzFDRD/9Ss0+KQtev4TAHL9QMmA+8zLjPxqLNT/kqsQ+na4RPzXVZj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJJ5Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKZHRPQAAAAD6eOi/AAAAAKV7uz0AAAAA6+b6PwAAAADA/gY+AAAAACFc5j8AAAAAcPyVvQAAAABVB9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxTiTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHGJqT0AAAAAffDsvwAAAAD5t5y9AAAAAIBJ+T8AAAAAMQDxvQAAAAClduM/AAAAAJZcu70AAAAA7RPyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4lUTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDRK4O8AAAAACA82b8AAAAANNghPAAAAAAtL/A/AAAAADeP5z0AAAAA5aD+PwAAAAAxl5A6AAAAAN4a7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2CN01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtolUOwAAAAATwuS/AAAAAKTuIL0AAAAA1o/vPwAAAABRh8E9AAAAAJ5U+z8AAAAAOCa3vAAAAADoa/S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYk7K+zt1KMAWyUTegDjAF0lEdArPQ+1fE4vXV9lChoBkdAk05KJl8PWmgHTegDaAhHQKz1ZNZeRgZ1fZQoaAZHQJdAZ5zHS4RoB03oA2gIR0Cs/Chky1u0dX2UKGgGR0CUnYtJWeYlaAdN6ANoCEdArPww/cFhX3V9lChoBkdAkp2MK5TZQGgHTegDaAhHQK0AiyUs4DN1fZQoaAZHQJb6+01IiC9oB03oA2gIR0CtAa1v/BFedX2UKGgGR0CQ/lrFOwgUaAdN6ANoCEdArQiB+H8CP3V9lChoBkdAh9ALqt5lfGgHTegDaAhHQK0Iim4y44J1fZQoaAZHQJRmfpqynk1oB03oA2gIR0CtDPMEidJ8dX2UKGgGR0CNSBFGXokiaAdN6ANoCEdArQ4M5fdAPnV9lChoBkdAkk8D6BRQ8GgHTegDaAhHQK0U0scyWRl1fZQoaAZHQJBL1g2Ifr9oB03oA2gIR0CtFNwpF1B/dX2UKGgGR0CQDk3kxREXaAdN6ANoCEdArRlX/95yEXV9lChoBkdAkddyntOVPmgHTegDaAhHQK0agZUDMeR1fZQoaAZHQJGHfDNyHVRoB03oA2gIR0CtIWr0Bfa6dX2UKGgGR0CSJXNYr8R+aAdN6ANoCEdArSF0Cgbp/3V9lChoBkdAkGInRXwLE2gHTegDaAhHQK0l7RWLgoB1fZQoaAZHQJAd1MSK3uxoB03oA2gIR0CtJxHxJ/XodX2UKGgGR0CQQtwblzU7aAdN6ANoCEdArS3JvR7Z4HV9lChoBkdAkNDmozeoDWgHTegDaAhHQK0t0s6q8151fZQoaAZHQIiNcOuq3mVoB03oA2gIR0CtMlGzKLbYdX2UKGgGR0CQJ4Ay2x6faAdN6ANoCEdArTNspmVZ93V9lChoBkdAkpWrqt5lfGgHTegDaAhHQK06IMsH0K91fZQoaAZHQI95wJPZZjhoB03oA2gIR0CtOirmhdt3dX2UKGgGR0CNOgEnssxxaAdN6ANoCEdArT6PM0P6K3V9lChoBkdAkJ1dhAnlXGgHTegDaAhHQK0/t7/n4fx1fZQoaAZHQI0ZSoqCpWFoB03oA2gIR0CtRokVFhG6dX2UKGgGR0CR7D0XgtOEaAdN6ANoCEdArUaRzJZGKHV9lChoBkdAkNXx+WnjyWgHTegDaAhHQK1LB5uZThp1fZQoaAZHQJE4KL5ylvZoB03oA2gIR0CtTBzcZccEdX2UKGgGR0CO9wGbCrLhaAdN6ANoCEdArVK9x2jfvXV9lChoBkdAjwxc4gieNGgHTegDaAhHQK1SxuUliSd1fZQoaAZHQItK1ObiIcloB03oA2gIR0CtVzWOyVv/dX2UKGgGR0CTooaxoqTbaAdN6ANoCEdArVhX3+MqBnV9lChoBkdAkZJ0CeVcEGgHTegDaAhHQK1fJalk6Lh1fZQoaAZHQI8rf7JnxrloB03oA2gIR0CtXy5lnRLLdX2UKGgGR0CQNGFpwjt5aAdN6ANoCEdArWOw7/4qPXV9lChoBkdAh3iadUbT+mgHTegDaAhHQK1k0OI68xt1fZQoaAZHQJCOacH4XXRoB03oA2gIR0Cta69APd2xdX2UKGgGR0B2VncHnlnzaAdN6ANoCEdArWu4j8k2P3V9lChoBkdAih6ib+cYqGgHTegDaAhHQK1wDbGm1pl1fZQoaAZHQIuSFvMr3CdoB03oA2gIR0CtcSZIH1OCdX2UKGgGR0CQ67fa6BiDaAdN6ANoCEdArXgDmhdt23V9lChoBkdAjAOI0ALiM2gHTegDaAhHQK14DKuB+Wp1fZQoaAZHQJSSTO/tY0VoB03oA2gIR0CtfI3oC+10dX2UKGgGR0CIfDuJDVpcaAdN6ANoCEdArX2xMvh60XV9lChoBkdAkS6cv7FbV2gHTegDaAhHQK2EcRqXWvt1fZQoaAZHQJPnrrKNhmZoB03oA2gIR0CthHoU8FINdX2UKGgGR0CP7vk7OmiyaAdN6ANoCEdArYjkH4XXRXV9lChoBkdAlfbgrpaA4GgHTegDaAhHQK2KD/m1YyR1fZQoaAZHQJQ7zL5hz/9oB03oA2gIR0CtkNItthuwdX2UKGgGR0CQNxM0gr6MaAdN6ANoCEdArZDa7I1cdHV9lChoBkdAhQhHLq2SdWgHTegDaAhHQK2VVZ13dKx1fZQoaAZHQIL5Rk5IYm9oB03oA2gIR0CtlnfYzzmPdX2UKGgGR0CTttQnQY1paAdN6ANoCEdArZ0/BxgiNnV9lChoBkdAkgulK9PDYWgHTegDaAhHQK2dRy08eS11fZQoaAZHQJOfDMdLg4xoB03oA2gIR0Ctoa7ihnJ1dX2UKGgGR0CUi3BacI7eaAdN6ANoCEdAraLVa0QbuXV9lChoBkdAkFx+3MINVmgHTegDaAhHQK2poNT987Z1fZQoaAZHQJScHVPN3W5oB03oA2gIR0CtqamjTKDDdX2UKGgGR0BxPtuEVWS2aAdN6ANoCEdAra4JxJd0JXV9lChoBkdAlRRgK8cuJ2gHTegDaAhHQK2vMyDZlFt1fZQoaAZHQJT1uHi3ocJoB03oA2gIR0CtteDBl+VkdX2UKGgGR0CQZqe40/GEaAdN6ANoCEdArbXpKjBVMnV9lChoBkdAkwpkk8ifQWgHTegDaAhHQK26VjBEa2p1fZQoaAZHQJP6ylEZzgdoB03oA2gIR0Ctu3dld1MedX2UKGgGR0CR5SHiWE9MaAdN6ANoCEdArcIEXpGFz3V9lChoBkdAkSD3enAIp2gHTegDaAhHQK3CDO+qR2d1fZQoaAZHQJSsLJdSl31oB03oA2gIR0CtxlL74zrNdX2UKGgGR0CJfM9PDYRNaAdN6ANoCEdArcdqTY/Vy3V9lChoBkdAjrOU163RX2gHTegDaAhHQK3OQHWSU1R1fZQoaAZHQJINddVvMr5oB03oA2gIR0CtzkjuKGcndX2UKGgGR0CIcCVRDTjOaAdN6ANoCEdArdKq1/lQuXV9lChoBkdAiaS624NI9WgHTegDaAhHQK3T0SXdCVt1fZQoaAZHQIYe6SRr8BNoB03oA2gIR0Ct2noOYplSdX2UKGgGR0CG/EZIg/1QaAdN6ANoCEdArdqCebutwXV9lChoBkdAlQwZl8PWhGgHTegDaAhHQK3e/ub7TDx1fZQoaAZHQJMCwvEjxCpoB03oA2gIR0Ct4Cwb+98JdX2UKGgGR0CVP1FA3T/iaAdN6ANoCEdArebc8/2TPnV9lChoBkdAiqQfReC04WgHTegDaAhHQK3m5ZQHiWF1fZQoaAZHQJXeHVurIYFoB03oA2gIR0Ct60M3Q2MsdX2UKGgGR0CRbaqubI91aAdN6ANoCEdArexgVsUIs3V9lChoBkdAkhLpnL7oCGgHTegDaAhHQK3zKb70nPV1fZQoaAZHQIngfAymALBoB03oA2gIR0Ct8zS08eS0dX2UKGgGR0CSdmNtqHoHaAdN6ANoCEdArfepl6JIlXV9lChoBkdAkVzSHmA9V2gHTegDaAhHQK34zP557gN1fZQoaAZHQJCkt6By0a9oB03oA2gIR0Ct/4oaLn9vdX2UKGgGR0CTCYGM4tHyaAdN6ANoCEdArf+ShJyyU3V9lChoBkdAl0R2NFSbY2gHTegDaAhHQK4D9Drqt5l1fZQoaAZHQJRQ0N9YwItoB03oA2gIR0CuBRIWHk92dX2UKGgGR0CYM17SRbKSaAdN6ANoCEdArgv1PacqfHV9lChoBkdAmUS+maYu02gHTegDaAhHQK4L/gLJCBx1fZQoaAZHQJgqPo9s7+1oB03oA2gIR0CuEHKgh8pkdX2UKGgGR0CZTZBqKxcFaAdN6ANoCEdArhGXCKrJbXV9lChoBkdAkqQ7P6be/GgHTegDaAhHQK4YXn3cpLF1fZQoaAZHQJRpAC2c8T1oB03oA2gIR0CuGGcwpON6dX2UKGgGR0CThOwwCbMHaAdN6ANoCEdArhzxCngpB3V9lChoBkdAlsY9Jz1bq2gHTegDaAhHQK4eGo2GZeB1fZQoaAZHQJT1h7Uoa1loB03oA2gIR0CuJL5zxPO6dX2UKGgGR0CSfGw5eZ5SaAdN6ANoCEdAriTHbh3qzXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e81e751e12b240dde913ef600c561696abf0a261e5bfc0f427a545d0b95639d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:111cccdec8804b44bdcfd3aae86a9d2fd3c17187de400c55685ac39ef580130a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f695632ad30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f695632adc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f695632ae50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f695632aee0>", "_build": "<function ActorCriticPolicy._build at 0x7f695632af70>", "forward": "<function ActorCriticPolicy.forward at 0x7f695632d040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f695632d0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f695632d160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f695632d1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f695632d280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f695632d310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f695632d3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69563267b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675187382927833119, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC+BgDwXGuG/Uvjdv2op3D4FQ9i/KVO/P4fMj73B0PO+DzCCvzl5Cz/Hf08/mx8cPmnykD/PQza+v+EtP1xWGL9+lWw+9Gmivq2arD2Gn16+OqQEv6bHZD9CCiu/nzupvxqLNT/kqsQ+na4RP570jb/1n6s/GENJv0SSpD6qeyq/u7Kov8uq/b/ZZzS/hhWLvyTT2j5W8Le/eh71P9nW/r9uVHi/bqFYPw0WJT4KYL694nSpv0XK5z+x1x4/wzyKQN/PXr8vlRo+zG8JPvcmPEAaizU/5KrEPprt4L+e9I2/S4QFP0O1E7+O2ug+qWw+v6b6bb8hQ5o+Tr9Gvh1AOb+TVNC/m/CYPUU3Gz46RWHAuwQ2v59kuT+mdGA+bK3zPnXXwj5xwXBAffZEP1G9sTwIKhy/XHoPQIL8qj+lpzo/L3+0v+SqxD6a7eC/NdVmP3cMEL1DXN2/XYG2v8xNSDta2Y2/pZcdP2DQkD4bFey+DdcHPyzKTL5fYtg++yW3v288lr9UtUQ8LlKvvfOYrz8Npd6/hnYIPzFDRD/9Ss0+KQtev4TAHL9QMmA+8zLjPxqLNT/kqsQ+na4RPzXVZj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJJ5Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKZHRPQAAAAD6eOi/AAAAAKV7uz0AAAAA6+b6PwAAAADA/gY+AAAAACFc5j8AAAAAcPyVvQAAAABVB9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxTiTtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHGJqT0AAAAAffDsvwAAAAD5t5y9AAAAAIBJ+T8AAAAAMQDxvQAAAAClduM/AAAAAJZcu70AAAAA7RPyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4lUTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDRK4O8AAAAACA82b8AAAAANNghPAAAAAAtL/A/AAAAADeP5z0AAAAA5aD+PwAAAAAxl5A6AAAAAN4a7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2CN01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtolUOwAAAAATwuS/AAAAAKTuIL0AAAAA1o/vPwAAAABRh8E9AAAAAJ5U+z8AAAAAOCa3vAAAAADoa/S/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYk7K+zt1KMAWyUTegDjAF0lEdArPQ+1fE4vXV9lChoBkdAk05KJl8PWmgHTegDaAhHQKz1ZNZeRgZ1fZQoaAZHQJdAZ5zHS4RoB03oA2gIR0Cs/Chky1u0dX2UKGgGR0CUnYtJWeYlaAdN6ANoCEdArPww/cFhX3V9lChoBkdAkp2MK5TZQGgHTegDaAhHQK0AiyUs4DN1fZQoaAZHQJb6+01IiC9oB03oA2gIR0CtAa1v/BFedX2UKGgGR0CQ/lrFOwgUaAdN6ANoCEdArQiB+H8CP3V9lChoBkdAh9ALqt5lfGgHTegDaAhHQK0Iim4y44J1fZQoaAZHQJRmfpqynk1oB03oA2gIR0CtDPMEidJ8dX2UKGgGR0CNSBFGXokiaAdN6ANoCEdArQ4M5fdAPnV9lChoBkdAkk8D6BRQ8GgHTegDaAhHQK0U0scyWRl1fZQoaAZHQJBL1g2Ifr9oB03oA2gIR0CtFNwpF1B/dX2UKGgGR0CQDk3kxREXaAdN6ANoCEdArRlX/95yEXV9lChoBkdAkddyntOVPmgHTegDaAhHQK0agZUDMeR1fZQoaAZHQJGHfDNyHVRoB03oA2gIR0CtIWr0Bfa6dX2UKGgGR0CSJXNYr8R+aAdN6ANoCEdArSF0Cgbp/3V9lChoBkdAkGInRXwLE2gHTegDaAhHQK0l7RWLgoB1fZQoaAZHQJAd1MSK3uxoB03oA2gIR0CtJxHxJ/XodX2UKGgGR0CQQtwblzU7aAdN6ANoCEdArS3JvR7Z4HV9lChoBkdAkNDmozeoDWgHTegDaAhHQK0t0s6q8151fZQoaAZHQIiNcOuq3mVoB03oA2gIR0CtMlGzKLbYdX2UKGgGR0CQJ4Ay2x6faAdN6ANoCEdArTNspmVZ93V9lChoBkdAkpWrqt5lfGgHTegDaAhHQK06IMsH0K91fZQoaAZHQI95wJPZZjhoB03oA2gIR0CtOirmhdt3dX2UKGgGR0CNOgEnssxxaAdN6ANoCEdArT6PM0P6K3V9lChoBkdAkJ1dhAnlXGgHTegDaAhHQK0/t7/n4fx1fZQoaAZHQI0ZSoqCpWFoB03oA2gIR0CtRokVFhG6dX2UKGgGR0CR7D0XgtOEaAdN6ANoCEdArUaRzJZGKHV9lChoBkdAkNXx+WnjyWgHTegDaAhHQK1LB5uZThp1fZQoaAZHQJE4KL5ylvZoB03oA2gIR0CtTBzcZccEdX2UKGgGR0CO9wGbCrLhaAdN6ANoCEdArVK9x2jfvXV9lChoBkdAjwxc4gieNGgHTegDaAhHQK1SxuUliSd1fZQoaAZHQItK1ObiIcloB03oA2gIR0CtVzWOyVv/dX2UKGgGR0CTooaxoqTbaAdN6ANoCEdArVhX3+MqBnV9lChoBkdAkZJ0CeVcEGgHTegDaAhHQK1fJalk6Lh1fZQoaAZHQI8rf7JnxrloB03oA2gIR0CtXy5lnRLLdX2UKGgGR0CQNGFpwjt5aAdN6ANoCEdArWOw7/4qPXV9lChoBkdAh3iadUbT+mgHTegDaAhHQK1k0OI68xt1fZQoaAZHQJCOacH4XXRoB03oA2gIR0Cta69APd2xdX2UKGgGR0B2VncHnlnzaAdN6ANoCEdArWu4j8k2P3V9lChoBkdAih6ib+cYqGgHTegDaAhHQK1wDbGm1pl1fZQoaAZHQIuSFvMr3CdoB03oA2gIR0CtcSZIH1OCdX2UKGgGR0CQ67fa6BiDaAdN6ANoCEdArXgDmhdt23V9lChoBkdAjAOI0ALiM2gHTegDaAhHQK14DKuB+Wp1fZQoaAZHQJSSTO/tY0VoB03oA2gIR0CtfI3oC+10dX2UKGgGR0CIfDuJDVpcaAdN6ANoCEdArX2xMvh60XV9lChoBkdAkS6cv7FbV2gHTegDaAhHQK2EcRqXWvt1fZQoaAZHQJPnrrKNhmZoB03oA2gIR0CthHoU8FINdX2UKGgGR0CP7vk7OmiyaAdN6ANoCEdArYjkH4XXRXV9lChoBkdAlfbgrpaA4GgHTegDaAhHQK2KD/m1YyR1fZQoaAZHQJQ7zL5hz/9oB03oA2gIR0CtkNItthuwdX2UKGgGR0CQNxM0gr6MaAdN6ANoCEdArZDa7I1cdHV9lChoBkdAhQhHLq2SdWgHTegDaAhHQK2VVZ13dKx1fZQoaAZHQIL5Rk5IYm9oB03oA2gIR0CtlnfYzzmPdX2UKGgGR0CTttQnQY1paAdN6ANoCEdArZ0/BxgiNnV9lChoBkdAkgulK9PDYWgHTegDaAhHQK2dRy08eS11fZQoaAZHQJOfDMdLg4xoB03oA2gIR0Ctoa7ihnJ1dX2UKGgGR0CUi3BacI7eaAdN6ANoCEdAraLVa0QbuXV9lChoBkdAkFx+3MINVmgHTegDaAhHQK2poNT987Z1fZQoaAZHQJScHVPN3W5oB03oA2gIR0CtqamjTKDDdX2UKGgGR0BxPtuEVWS2aAdN6ANoCEdAra4JxJd0JXV9lChoBkdAlRRgK8cuJ2gHTegDaAhHQK2vMyDZlFt1fZQoaAZHQJT1uHi3ocJoB03oA2gIR0CtteDBl+VkdX2UKGgGR0CQZqe40/GEaAdN6ANoCEdArbXpKjBVMnV9lChoBkdAkwpkk8ifQWgHTegDaAhHQK26VjBEa2p1fZQoaAZHQJP6ylEZzgdoB03oA2gIR0Ctu3dld1MedX2UKGgGR0CR5SHiWE9MaAdN6ANoCEdArcIEXpGFz3V9lChoBkdAkSD3enAIp2gHTegDaAhHQK3CDO+qR2d1fZQoaAZHQJSsLJdSl31oB03oA2gIR0CtxlL74zrNdX2UKGgGR0CJfM9PDYRNaAdN6ANoCEdArcdqTY/Vy3V9lChoBkdAjrOU163RX2gHTegDaAhHQK3OQHWSU1R1fZQoaAZHQJINddVvMr5oB03oA2gIR0CtzkjuKGcndX2UKGgGR0CIcCVRDTjOaAdN6ANoCEdArdKq1/lQuXV9lChoBkdAiaS624NI9WgHTegDaAhHQK3T0SXdCVt1fZQoaAZHQIYe6SRr8BNoB03oA2gIR0Ct2noOYplSdX2UKGgGR0CG/EZIg/1QaAdN6ANoCEdArdqCebutwXV9lChoBkdAlQwZl8PWhGgHTegDaAhHQK3e/ub7TDx1fZQoaAZHQJMCwvEjxCpoB03oA2gIR0Ct4Cwb+98JdX2UKGgGR0CVP1FA3T/iaAdN6ANoCEdArebc8/2TPnV9lChoBkdAiqQfReC04WgHTegDaAhHQK3m5ZQHiWF1fZQoaAZHQJXeHVurIYFoB03oA2gIR0Ct60M3Q2MsdX2UKGgGR0CRbaqubI91aAdN6ANoCEdArexgVsUIs3V9lChoBkdAkhLpnL7oCGgHTegDaAhHQK3zKb70nPV1fZQoaAZHQIngfAymALBoB03oA2gIR0Ct8zS08eS0dX2UKGgGR0CSdmNtqHoHaAdN6ANoCEdArfepl6JIlXV9lChoBkdAkVzSHmA9V2gHTegDaAhHQK34zP557gN1fZQoaAZHQJCkt6By0a9oB03oA2gIR0Ct/4oaLn9vdX2UKGgGR0CTCYGM4tHyaAdN6ANoCEdArf+ShJyyU3V9lChoBkdAl0R2NFSbY2gHTegDaAhHQK4D9Drqt5l1fZQoaAZHQJRQ0N9YwItoB03oA2gIR0CuBRIWHk92dX2UKGgGR0CYM17SRbKSaAdN6ANoCEdArgv1PacqfHV9lChoBkdAmUS+maYu02gHTegDaAhHQK4L/gLJCBx1fZQoaAZHQJgqPo9s7+1oB03oA2gIR0CuEHKgh8pkdX2UKGgGR0CZTZBqKxcFaAdN6ANoCEdArhGXCKrJbXV9lChoBkdAkqQ7P6be/GgHTegDaAhHQK4YXn3cpLF1fZQoaAZHQJRpAC2c8T1oB03oA2gIR0CuGGcwpON6dX2UKGgGR0CThOwwCbMHaAdN6ANoCEdArhzxCngpB3V9lChoBkdAlsY9Jz1bq2gHTegDaAhHQK4eGo2GZeB1fZQoaAZHQJT1h7Uoa1loB03oA2gIR0CuJL5zxPO6dX2UKGgGR0CSfGw5eZ5SaAdN6ANoCEdAriTHbh3qzXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047ea223bae2a6e2662608d9b3b949849e4a5825d6506bcfd3b6a477972f8a12
|
3 |
+
size 1091521
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1296.7569986187386, "std_reward": 221.9186394554428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-31T18:45:36.762705"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abc08d8fa8ee039cc42c99ca01e3d7ab8a38a9c8e12454400989d5424b54fea1
|
3 |
+
size 2136
|