File size: 4,764 Bytes
2443686 8eb1215 dd8de1f e9183f7 7bdfdf1 548463a dd8de1f 2443686 ed497aa 01f632e ed497aa 7bdfdf1 7676afe 7bdfdf1 ed497aa 01f632e ed497aa 01f632e ed497aa 01f632e ed497aa 2443686 ed497aa 2443686 ed497aa 2443686 ed497aa 8eb1215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
language:
- nl
license: cc-by-nc-4.0
library_name: peft
tags:
- llama
- alpaca
- Transformers
- text-generation-inference
datasets:
- BramVanroy/alpaca-cleaned-dutch
inference: false
base_model: openlm-research/open_llama_7b
pipeline_tag: text-generation
---
# open_llama_7b_alpaca_clean_dutch_qlora
## Model description
This adapter model is a fine-tuned version of [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b).
Finetuning was performed on the Dutch [BramVanroy/alpaca-cleaned-dutch](https://www.huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset which contains 52K of records with instruction following-data translated from English to Dutch.
See [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) for all information about the base model.
## Model usage
A basic example of how to use the finetuned model.
```
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "robinsmits/open_llama_7b_alpaca_clean_dutch_qlora"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast = False, add_eos_token = True)
config = PeftConfig.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit = True, device_map = "auto")
model = PeftModel.from_pretrained(model, model_name)
prompt = "### Instructie:\nWat zijn de drie belangrijkste softwareonderdelen die worden gebruikt bij webontwikkeling?\n\n### Antwoord:\n"
inputs = tokenizer(prompt, return_tensors = "pt", truncation = True).input_ids.cuda()
sample = model.generate(input_ids = inputs, max_new_tokens = 512, num_beams = 2, early_stopping = True, eos_token_id = tokenizer.eos_token_id)
output = tokenizer.decode(sample[0], skip_special_tokens = True)
print(output.split(prompt)[1])
```
The prompt and generated output for the above mentioned example is similar to the output shown below.
```
### Instructie:
Wat zijn de drie belangrijkste softwareonderdelen die worden gebruikt bij webontwikkeling?
### Antwoord:
</br>
De drie belangrijkste softwareonderdelen die worden gebruikt bij webontwikkeling zijn HTML, CSS en JavaScript.
```
For more extensive usage and a lot of generated samples (both good and bad samples) see the following [Inference Notebook](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Open_Llama_7B_Alpaca_Clean_Dutch_Inference.ipynb)
## Intended uses & limitations
The open_llama_7b model was primarily trained on the English language. Part of the dataset was a Wikipedia dump containing pages in 20 languages.
Dutch was one of those languages. Given the size of the total dataset and the wikipedia part the Dutch language was very likely less than 0.5% of the total data.
The generated output and performance of this model for the Dutch language is very likely not always comparable to the various Open-Llama models that have been finetuned on English Alpaca datasets.
The primary intention of this model is to explore and research the use of the Dutch language in combination with an Open LLM model.
## Training and evaluation data
This model was trained on the [BramVanroy/alpaca-cleaned-dutch](https://www.huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset.
Based on the dataset license only Non-Commercial use is allowed. Commercial use is strictly forbidden.
## Training procedure
This model was finetuned with a QLoRA setup on a Google Colab A100 GPU in about 6.5 hours.
The notebook used for training can be found here: [Training Notebook](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Open_Llama_7B_Alpaca_Clean_Dutch_Qlora.ipynb)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 64
- training_steps: 1536
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1240 | 1.0 | 768 | 1.1227 |
| 1.0177 | 2.0 | 1536 | 1.0645 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- PEFT 0.4.0.dev0 |