File size: 5,698 Bytes
4e677f2
7b86b4e
 
 
4e677f2
 
 
7b86b4e
4e677f2
 
 
 
dff3db0
2acfe57
 
 
 
72470a2
2acfe57
 
 
 
 
2162892
4e677f2
 
 
 
 
927b33b
4e677f2
ca64e04
 
4e677f2
2162892
 
 
4e677f2
 
7b86b4e
4e677f2
 
 
7b86b4e
4e677f2
 
 
7b86b4e
4e677f2
 
 
 
 
7b86b4e
 
2162892
7b86b4e
2162892
7b86b4e
2162892
 
7b86b4e
 
 
2162892
7b86b4e
4e677f2
 
 
2162892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b86b4e
4e677f2
 
 
7b86b4e
4e677f2
7b86b4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
language:
- uk
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-300m-uk
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice uk
      type: common_voice
      args: uk
    metrics:
       - name: Test WER
         type: wer
         value: 27.99
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-uk

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.  
Notebook for training is located in this repository: [https://github.com/robinhad/wav2vec2-xls-r-ukrainian](https://github.com/robinhad/wav2vec2-xls-r-ukrainian).  
It achieves the following results on the evaluation set:
- Loss: 0.4165
- Wer: 0.2799
- Cer: 0.0601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 160
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Cer    | Validation Loss | Wer    |
|:-------------:|:------:|:-----:|:------:|:---------------:|:------:|
| 4.3982        | 9.3    | 400   | 0.1437 | 0.5218          | 0.6507 |
| 0.229         | 18.6   | 800   | 0.0848 | 0.3679          | 0.4048 |
| 0.1054        | 27.9   | 1200  | 0.0778 | 0.3813          | 0.3670 |
| 0.0784        | 37.21  | 1600  | 0.0747 | 0.3839          | 0.3550 |
| 0.066         | 46.51  | 2000  | 0.0736 | 0.3970          | 0.3443 |
| 0.0603        | 55.8   | 2400  | 0.0722 | 0.3702          | 0.3393 |
| 0.0539        | 65.11  | 2800  | 0.0724 | 0.3762          | 0.3388 |
| 0.0497        | 74.41  | 3200  | 0.0713 | 0.3623          | 0.3414 |
| 0.0432        | 83.71  | 3600  | 0.0725 | 0.3847          | 0.3346 |
| 0.0438        | 93.02  | 4000  | 0.0750 | 0.4058          | 0.3393 |
| 0.0413        | 102.32 | 4400  | 0.0727 | 0.3957          | 0.3363 |
| 0.039         | 111.62 | 4800  | 0.0718 | 0.3865          | 0.3330 |
| 0.0356        | 120.92 | 5200  | 0.0711 | 0.3860          | 0.3319 |
| 0.0336        | 130.23 | 5600  | 0.0700 | 0.3902          | 0.3242 |
| 0.034         | 139.53 | 6000  | 0.0732 | 0.3930          | 0.3337 |
| 0.0273        | 148.83 | 6400  | 0.0748 | 0.3912          | 0.3375 |
| 0.027         | 158.14 | 6800  | 0.0752 | 0.4266          | 0.3434 |
| 0.028         | 167.44 | 7200  | 0.0708 | 0.3895          | 0.3227 |
| 0.0241        | 176.73 | 7600  | 0.0727 | 0.3967          | 0.3294 |
| 0.0241        | 186.05 | 8000  | 0.0712 | 0.4058          | 0.3255 |
| 0.0209        | 195.34 | 8400  | 0.0702 | 0.4102          | 0.3233 |
| 0.0206        | 204.64 | 8800  | 0.0699 | 0.4075          | 0.3194 |
| 0.0172        | 213.94 | 9200  | 0.0695 | 0.4222          | 0.3191 |
| 0.0166        | 223.25 | 9600  | 0.0678 | 0.3860          | 0.3135 |
| 0.0156        | 232.55 | 10000 | 0.0677 | 0.4035          | 0.3117 |
| 0.0149        | 241.85 | 10400 | 0.0677 | 0.3951          | 0.3087 |
| 0.0142        | 251.16 | 10800 | 0.0674 | 0.3972          | 0.3097 |
| 0.0134        | 260.46 | 11200 | 0.0675 | 0.4069          | 0.3111 |
| 0.0116        | 269.76 | 11600 | 0.0697 | 0.4189          | 0.3161 |
| 0.0119        | 279.07 | 12000 | 0.0648 | 0.3902          | 0.3008 |
| 0.0098        | 288.37 | 12400 | 0.0652 | 0.4095          | 0.3002 |
| 0.0091        | 297.67 | 12800 | 0.0644 | 0.3892          | 0.2990 |
| 0.0094        | 306.96 | 13200 | 0.0647 | 0.4026          | 0.2983 |
| 0.0081        | 316.28 | 13600 | 0.0646 | 0.4303          | 0.2978 |
| 0.0079        | 325.57 | 14000 | 0.0643 | 0.4044          | 0.2980 |
| 0.0072        | 334.87 | 14400 | 0.0655 | 0.3828          | 0.2999 |
| 0.0081        | 344.18 | 14800 | 0.0668 | 0.4108          | 0.3046 |
| 0.0088        | 353.48 | 15200 | 0.0654 | 0.4019          | 0.2993 |
| 0.0088        | 362.78 | 15600 | 0.0681 | 0.4073          | 0.3091 |
| 0.0079        | 372.09 | 16000 | 0.0667 | 0.4204          | 0.3055 |
| 0.0072        | 381.39 | 16400 | 0.0656 | 0.4030          | 0.3028 |
| 0.0073        | 390.69 | 16800 | 0.0677 | 0.4032          | 0.3081 |
| 0.0069        | 399.99 | 17200 | 0.0669 | 0.4130          | 0.3021 |
| 0.0063        | 409.3  | 17600 | 0.0651 | 0.4072          | 0.2979 |
| 0.0059        | 418.6  | 18000 | 0.0640 | 0.4110          | 0.2969 |
| 0.0056        | 427.9  | 18400 | 0.0647 | 0.4229          | 0.2995 |
| 0.005         | 437.21 | 18800 | 0.0624 | 0.4118          | 0.2885 |
| 0.0046        | 446.51 | 19200 | 0.0615 | 0.4111          | 0.2841 |
| 0.0043        | 455.8  | 19600 | 0.0616 | 0.4071          | 0.2850 |
| 0.0038        | 465.11 | 20000 | 0.0624 | 0.4268          | 0.2867 |
| 0.0035        | 474.41 | 20400 | 0.0605 | 0.4117          | 0.2820 |
| 0.0035        | 483.71 | 20800 | 0.0602 | 0.4155          | 0.2819 |
| 0.0034        | 493.02 | 21200 | 0.0601 | 0.4165          | 0.2799 |


### Framework versions

- Transformers 4.14.1
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3