rmn0ff's picture
tune gamma
3e7cafc
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>",
"_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f6c958459c0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651938682.1329627,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ6az2Pmn66Pgkgu7KUrzciNRG7e3rPtgAAAAAAAAAAc56WPVKluT/vcDQ/3p1kPc2fpTu+DQY+AAAAAAAAAADm2Dk99kB9uvKAyLuThmexKZtvu3IXn7MAAIA/AACAP2b1q7ytGIY/VTLXvCMvO79brb69fbR7vAAAAAAAAAAAozKDvvpwWL2dUya8KQrquuVouT4JVqY7AACAPwAAgD8N8JC9+RJgP4axDL4TwSi/47kLvntNKDoAAAAAAAAAAM3cXjv29CO6Ygh2stZbdCk874O6I0RoMwAAgD8AAIA/k0wKvin+Xj5Viys+vznKvh46WD2pUjo8AAAAAAAAAADNmHg+mu4GP8pfib0xhhm/4gHgPsvKLLwAAAAAAAAAALDngD7UkCy9ZbVmPLnIZbq6oZS+CtIRvAAAgD8AAIA/LfJlPkiRv7xp/Ea7fHuxOVxFLb5ii4A6AACAPwAAAADacD0+LsigP9ByFT9j+h2/DjVrPtLWgT4AAAAAAAAAAJqXOz2uwaC6vcDbOkBaoDWZtXG6+vv8uQAAAAAAAAAAmlcDvAXSpLujN1A8v4+9PHcjDb3Sp549AACAPwAAgD/Nwvm84aS1utTpnbVTjH6wSc9cuZKWpjQAAIA/AACAPypXkT5sFPA+ndzwu9cEAb+wOJ0+WRQ8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBw/SUckCUhpRSlIwBbJRLy4wBdJRHQLp0ijbBXS11fZQoaAZoCWgPQwh39SoyuiZ0QJSGlFKUaBVNBQFoFkdAunSW4c3l0nV9lChoBmgJaA9DCPyMCwfCeXFAlIaUUpRoFUvFaBZHQLp0qOxjawl1fZQoaAZoCWgPQwgv3LkwEpJyQJSGlFKUaBVLxWgWR0C6dLSjYZl4dX2UKGgGaAloD0MIrwrUYnCBcUCUhpRSlGgVS85oFkdAunT1lFtsN3V9lChoBmgJaA9DCPtbAvDPc25AlIaUUpRoFUu4aBZHQLp1UUAksz51fZQoaAZoCWgPQwjBq+XOTP1vQJSGlFKUaBVLy2gWR0C6dXBUzbeudX2UKGgGaAloD0MIeNLCZZV2cUCUhpRSlGgVTScBaBZHQLp1ezt1IRR1fZQoaAZoCWgPQwhy3v/HSRByQJSGlFKUaBVLrmgWR0C6daeFHrhSdX2UKGgGaAloD0MIuD1BYrs/cECUhpRSlGgVS69oFkdAunW6tA9mpXV9lChoBmgJaA9DCNApyM+GCnBAlIaUUpRoFUvEaBZHQLp2FgR9PUN1fZQoaAZoCWgPQwhodt1bUQNyQJSGlFKUaBVLt2gWR0C6diAqiGnGdX2UKGgGaAloD0MIHsNjP8uVc0CUhpRSlGgVS8toFkdAunYioFV1fXV9lChoBmgJaA9DCDeOWItP0m9AlIaUUpRoFUu2aBZHQLp2MfReC051fZQoaAZoCWgPQwiqm4u/be5vQJSGlFKUaBVLzmgWR0C6dkdthuwYdX2UKGgGaAloD0MIYyXmWYmWc0CUhpRSlGgVS7BoFkdAunZ2qaPS2HV9lChoBmgJaA9DCK/S3XU26XFAlIaUUpRoFUu1aBZHQLp3CYukDZF1fZQoaAZoCWgPQwgtQUZAxURyQJSGlFKUaBVLxmgWR0C6dxEMb3oLdX2UKGgGaAloD0MIIPEr1jB8c0CUhpRSlGgVTRYBaBZHQLp3IcbR4Ql1fZQoaAZoCWgPQwhcV8wIr4JxQJSGlFKUaBVLs2gWR0C6d1eaScLCdX2UKGgGaAloD0MIuOaO/tcXc0CUhpRSlGgVS9hoFkdAundmxA0KqnV9lChoBmgJaA9DCGa9GMpJKnFAlIaUUpRoFUvQaBZHQLp3hWfK6nR1fZQoaAZoCWgPQwgX2GMi5dNxQJSGlFKUaBVLsWgWR0C6d7r3Cbc5dX2UKGgGaAloD0MIu2BwzZ3qcUCUhpRSlGgVS69oFkdAunfItBfKIXV9lChoBmgJaA9DCCFX6lnQTXFAlIaUUpRoFUvDaBZHQLp359/z8P51fZQoaAZoCWgPQwhb0eY4t8hwQJSGlFKUaBVLyWgWR0C6eB0kB0ZFdX2UKGgGaAloD0MIF0hQ/Bg/ZECUhpRSlGgVTegDaBZHQLp4LC9RJmN1fZQoaAZoCWgPQwhkV1pG6vtxQJSGlFKUaBVL4mgWR0C6eIEAHVwxdX2UKGgGaAloD0MIQ8ajVMJKX0CUhpRSlGgVTegDaBZHQLp4odfLLZB1fZQoaAZoCWgPQwivCz84H4FzQJSGlFKUaBVNJgFoFkdAuni29alk6XV9lChoBmgJaA9DCMB63LfaEnRAlIaUUpRoFUu9aBZHQLp4yFnZkCp1fZQoaAZoCWgPQwhJg9vaAppyQJSGlFKUaBVL52gWR0C6eQ6RdQfqdX2UKGgGaAloD0MIbMzriAPzcUCUhpRSlGgVS9RoFkdAunkmE384xXV9lChoBmgJaA9DCPflzHYFAGZAlIaUUpRoFU3oA2gWR0C6eTH6dlNDdX2UKGgGaAloD0MIknnkD8ZkcECUhpRSlGgVS7VoFkdAunk/sniNsHV9lChoBmgJaA9DCIcZGk/EmnFAlIaUUpRoFUvTaBZHQLqAPhDw6Qx1fZQoaAZoCWgPQwgfSUkPw6hxQJSGlFKUaBVLtmgWR0C6gFekYXO4dX2UKGgGaAloD0MITyLCv4jac0CUhpRSlGgVS8loFkdAuoBhxVAAyXV9lChoBmgJaA9DCBnG3SBa/3FAlIaUUpRoFU00AWgWR0C6gI/EOy3TdX2UKGgGaAloD0MIOV6B6EmFcUCUhpRSlGgVS7poFkdAuoCVNQCSzXV9lChoBmgJaA9DCLL0oQtqonBAlIaUUpRoFUvNaBZHQLqArDSw4bV1fZQoaAZoCWgPQwhu+rMfqSJxQJSGlFKUaBVL0WgWR0C6gQrVWjoIdX2UKGgGaAloD0MIxLKZQ9Iob0CUhpRSlGgVS8toFkdAuoEeAz544nV9lChoBmgJaA9DCDo978YCs3FAlIaUUpRoFUvMaBZHQLqBNT4L1Ep1fZQoaAZoCWgPQwgP0lPkEEpxQJSGlFKUaBVLxGgWR0C6gTjmKZUldX2UKGgGaAloD0MIWMfxQ+UyckCUhpRSlGgVS6hoFkdAuoFHtJFspHV9lChoBmgJaA9DCEf/y7VoxXJAlIaUUpRoFUuzaBZHQLqBcENvwVl1fZQoaAZoCWgPQwhIisiwitVtQJSGlFKUaBVLtmgWR0C6gYAZXMhYdX2UKGgGaAloD0MIX5oiwOn9b0CUhpRSlGgVS7loFkdAuoGePQv6CXV9lChoBmgJaA9DCFwExvrGdnJAlIaUUpRoFUvIaBZHQLqB4d5Y5kt1fZQoaAZoCWgPQwidnKG4o6JyQJSGlFKUaBVL7GgWR0C6gfdTkyULdX2UKGgGaAloD0MILxSwHQwfb0CUhpRSlGgVS8RoFkdAuoIQlZ5iVnV9lChoBmgJaA9DCIWwGktYMnFAlIaUUpRoFUvDaBZHQLqCKSL61st1fZQoaAZoCWgPQwjf/IaJhuBwQJSGlFKUaBVNBQFoFkdAuoJT4QBgeHV9lChoBmgJaA9DCK8nui48M3BAlIaUUpRoFUu6aBZHQLqCe7PY4AF1fZQoaAZoCWgPQwgdc56x75JyQJSGlFKUaBVNAgFoFkdAuoKJhLGrCHV9lChoBmgJaA9DCHNnJhgOG3FAlIaUUpRoFUvFaBZHQLqCogXuVop1fZQoaAZoCWgPQwhQw7ewLkpwQJSGlFKUaBVLvGgWR0C6gqkRnOB2dX2UKGgGaAloD0MI+dhdoKRRcUCUhpRSlGgVS8poFkdAuoLP/bTMJXV9lChoBmgJaA9DCCEf9GzWrnFAlIaUUpRoFUvZaBZHQLqC3L876pJ1fZQoaAZoCWgPQwhxdmuZTAJzQJSGlFKUaBVLuGgWR0C6gukK/mDEdX2UKGgGaAloD0MIeNDsujejcUCUhpRSlGgVS9toFkdAuoNOeEqUeXV9lChoBmgJaA9DCDwUBfpEpHBAlIaUUpRoFUu1aBZHQLqDW9AooeB1fZQoaAZoCWgPQwhg5dAi2+dxQJSGlFKUaBVLt2gWR0C6g47O7g89dX2UKGgGaAloD0MIn+i68EOBckCUhpRSlGgVS+BoFkdAuoOcKD0163V9lChoBmgJaA9DCAg6WtWSH2JAlIaUUpRoFU3oA2gWR0C6g6E12q1gdX2UKGgGaAloD0MId4cUA6QObkCUhpRSlGgVS8ZoFkdAuoPTn8sMAnV9lChoBmgJaA9DCMEeEylNz25AlIaUUpRoFUu/aBZHQLqEH2aDwph1fZQoaAZoCWgPQwiMuWsJObpxQJSGlFKUaBVLxWgWR0C6hCTSb6P9dX2UKGgGaAloD0MIipElc+yzckCUhpRSlGgVS9hoFkdAuoQjtlZownV9lChoBmgJaA9DCBVVv9K59nBAlIaUUpRoFUvXaBZHQLqEMg+hXbN1fZQoaAZoCWgPQwg3M/rRMDxwQJSGlFKUaBVLvWgWR0C6hFeKO1fFdX2UKGgGaAloD0MIirDh6RVKcUCUhpRSlGgVS8ZoFkdAuoR3f779AHV9lChoBmgJaA9DCK9BX3p7oHFAlIaUUpRoFUvdaBZHQLqEipdKNAF1fZQoaAZoCWgPQwhLBoAqrhNwQJSGlFKUaBVLq2gWR0C6hP7Cm/FjdX2UKGgGaAloD0MIpdjROFRIc0CUhpRSlGgVS85oFkdAuoUETbnHN3V9lChoBmgJaA9DCDTW/s72L3BAlIaUUpRoFUu3aBZHQLqFH6dDpkh1fZQoaAZoCWgPQwjk9PV8jZBxQJSGlFKUaBVL0WgWR0C6hUgCOmzjdX2UKGgGaAloD0MISb4SSAkoc0CUhpRSlGgVS8toFkdAuoWKZRbbDnV9lChoBmgJaA9DCMDpXbxfiXNAlIaUUpRoFU0WAWgWR0C6hZm0u14PdX2UKGgGaAloD0MI+u3rwLl5ckCUhpRSlGgVS7BoFkdAuoWlpblijXV9lChoBmgJaA9DCLABEeJKPXBAlIaUUpRoFUu8aBZHQLqFujxTbWV1fZQoaAZoCWgPQwjnjCjtTTVwQJSGlFKUaBVLvWgWR0C6hb+ws5GSdX2UKGgGaAloD0MIQfUPIpmlc0CUhpRSlGgVS7xoFkdAuoYtxiobXHV9lChoBmgJaA9DCAcMkj5tn3FAlIaUUpRoFUvgaBZHQLqGS9hqj8F1fZQoaAZoCWgPQwjbNLbXAsRxQJSGlFKUaBVL4WgWR0C6hnUrK/21dX2UKGgGaAloD0MIHCeFeY/rZkCUhpRSlGgVTegDaBZHQLqGdM98qnZ1fZQoaAZoCWgPQwgk7xzKUPtNQJSGlFKUaBVLf2gWR0C6hs5VS4vwdX2UKGgGaAloD0MIbMuAs9TUcECUhpRSlGgVS89oFkdAuobkHgP3BnV9lChoBmgJaA9DCK6f/rNmwnJAlIaUUpRoFUvVaBZHQLqG7UiILw51fZQoaAZoCWgPQwii725lCcpuQJSGlFKUaBVLwGgWR0C6hwXB1s+FdX2UKGgGaAloD0MIayxhbcw3c0CUhpRSlGgVS+poFkdAuodErqdH2HV9lChoBmgJaA9DCHhflQvVvHBAlIaUUpRoFUvJaBZHQLqHZsPatcR1fZQoaAZoCWgPQwizeofbIRhxQJSGlFKUaBVLxGgWR0C6h5HOryUcdX2UKGgGaAloD0MIlGjJ4+mrcUCUhpRSlGgVS69oFkdAuogujh1klXV9lChoBmgJaA9DCKg4DrzaaHFAlIaUUpRoFUvGaBZHQLqIQEpAlfJ1fZQoaAZoCWgPQwgF3zR9thVzQJSGlFKUaBVL7GgWR0C6iI+NPxhEdX2UKGgGaAloD0MIhpDz/n9PcUCUhpRSlGgVS9ZoFkdAuoiga/ATI3V9lChoBmgJaA9DCFM+BFUj6m9AlIaUUpRoFUuxaBZHQLqIpDPWxyJ1fZQoaAZoCWgPQwhlqIqp9GVxQJSGlFKUaBVLu2gWR0C6iNhM8HObdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 492,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}