File size: 2,644 Bytes
304b605 6fcbae8 304b605 6fcbae8 304b605 6fcbae8 304b605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0280
- Wer: 0.0082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.1152 | 1.42 | 500 | 0.0416 | 0.0159 |
| 0.0803 | 2.83 | 1000 | 0.0372 | 0.0144 |
| 0.0672 | 4.25 | 1500 | 0.0345 | 0.0119 |
| 0.0564 | 5.67 | 2000 | 0.0338 | 0.0106 |
| 0.0513 | 7.08 | 2500 | 0.0307 | 0.0100 |
| 0.0448 | 8.5 | 3000 | 0.0343 | 0.0098 |
| 0.0374 | 9.92 | 3500 | 0.0300 | 0.0084 |
| 0.0368 | 11.33 | 4000 | 0.0314 | 0.0086 |
| 0.0388 | 12.75 | 4500 | 0.0283 | 0.0089 |
| 0.0277 | 14.16 | 5000 | 0.0302 | 0.0089 |
| 0.0298 | 15.58 | 5500 | 0.0298 | 0.0089 |
| 0.0271 | 17.0 | 6000 | 0.0320 | 0.0098 |
| 0.024 | 18.41 | 6500 | 0.0286 | 0.0088 |
| 0.0236 | 19.83 | 7000 | 0.0284 | 0.0084 |
| 0.0238 | 21.25 | 7500 | 0.0290 | 0.0086 |
| 0.0227 | 22.66 | 8000 | 0.0284 | 0.0093 |
| 0.0198 | 24.08 | 8500 | 0.0280 | 0.0088 |
| 0.0225 | 25.5 | 9000 | 0.0281 | 0.0086 |
| 0.018 | 26.91 | 9500 | 0.0280 | 0.0082 |
| 0.0178 | 28.33 | 10000 | 0.0280 | 0.0082 |
| 0.0209 | 29.75 | 10500 | 0.0280 | 0.0082 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.9.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|