Model save
Browse files- README.md +86 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: new_ecc_segformer
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# new_ecc_segformer
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0663
|
19 |
+
- Mean Iou: 0.1943
|
20 |
+
- Mean Accuracy: 0.3915
|
21 |
+
- Overall Accuracy: 0.3915
|
22 |
+
- Accuracy Background: nan
|
23 |
+
- Accuracy Crack: 0.3915
|
24 |
+
- Iou Background: 0.0
|
25 |
+
- Iou Crack: 0.3887
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 2
|
46 |
+
- eval_batch_size: 2
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
|
56 |
+
| 0.0489 | 1.0 | 438 | 0.0634 | 0.1464 | 0.2933 | 0.2933 | nan | 0.2933 | 0.0 | 0.2929 |
|
57 |
+
| 0.0542 | 2.0 | 876 | 0.0439 | 0.1956 | 0.3917 | 0.3917 | nan | 0.3917 | 0.0 | 0.3912 |
|
58 |
+
| 0.0484 | 3.0 | 1314 | 0.0434 | 0.1719 | 0.3551 | 0.3551 | nan | 0.3551 | 0.0 | 0.3439 |
|
59 |
+
| 0.0539 | 4.0 | 1752 | 0.0447 | 0.1871 | 0.3820 | 0.3820 | nan | 0.3820 | 0.0 | 0.3741 |
|
60 |
+
| 0.0565 | 5.0 | 2190 | 0.0435 | 0.1888 | 0.3937 | 0.3937 | nan | 0.3937 | 0.0 | 0.3777 |
|
61 |
+
| 0.0544 | 6.0 | 2628 | 0.0442 | 0.1904 | 0.3930 | 0.3930 | nan | 0.3930 | 0.0 | 0.3808 |
|
62 |
+
| 0.0421 | 7.0 | 3066 | 0.0449 | 0.2256 | 0.4651 | 0.4651 | nan | 0.4651 | 0.0 | 0.4513 |
|
63 |
+
| 0.0352 | 8.0 | 3504 | 0.0587 | 0.1569 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3138 |
|
64 |
+
| 0.0394 | 9.0 | 3942 | 0.0442 | 0.1842 | 0.3710 | 0.3710 | nan | 0.3710 | 0.0 | 0.3684 |
|
65 |
+
| 0.0445 | 10.0 | 4380 | 0.0609 | 0.1167 | 0.4173 | 0.4173 | nan | 0.4173 | 0.0 | 0.2334 |
|
66 |
+
| 0.0503 | 11.0 | 4818 | 0.0504 | 0.1702 | 0.3714 | 0.3714 | nan | 0.3714 | 0.0 | 0.3403 |
|
67 |
+
| 0.0379 | 12.0 | 5256 | 0.0460 | 0.1903 | 0.3869 | 0.3869 | nan | 0.3869 | 0.0 | 0.3807 |
|
68 |
+
| 0.0405 | 13.0 | 5694 | 0.0452 | 0.2017 | 0.4084 | 0.4084 | nan | 0.4084 | 0.0 | 0.4034 |
|
69 |
+
| 0.0367 | 14.0 | 6132 | 0.0477 | 0.1995 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.3990 |
|
70 |
+
| 0.0315 | 15.0 | 6570 | 0.0498 | 0.2073 | 0.4208 | 0.4208 | nan | 0.4208 | 0.0 | 0.4147 |
|
71 |
+
| 0.0244 | 16.0 | 7008 | 0.0486 | 0.1963 | 0.4029 | 0.4029 | nan | 0.4029 | 0.0 | 0.3926 |
|
72 |
+
| 0.031 | 17.0 | 7446 | 0.0568 | 0.1927 | 0.3892 | 0.3892 | nan | 0.3892 | 0.0 | 0.3855 |
|
73 |
+
| 0.0288 | 18.0 | 7884 | 0.0560 | 0.2033 | 0.4092 | 0.4092 | nan | 0.4092 | 0.0 | 0.4067 |
|
74 |
+
| 0.0354 | 19.0 | 8322 | 0.0613 | 0.2007 | 0.4056 | 0.4056 | nan | 0.4056 | 0.0 | 0.4013 |
|
75 |
+
| 0.0315 | 20.0 | 8760 | 0.0605 | 0.1865 | 0.3752 | 0.3752 | nan | 0.3752 | 0.0 | 0.3731 |
|
76 |
+
| 0.0343 | 21.0 | 9198 | 0.0653 | 0.1991 | 0.4019 | 0.4019 | nan | 0.4019 | 0.0 | 0.3981 |
|
77 |
+
| 0.0327 | 22.0 | 9636 | 0.0660 | 0.1945 | 0.3924 | 0.3924 | nan | 0.3924 | 0.0 | 0.3891 |
|
78 |
+
| 0.0252 | 22.83 | 10000 | 0.0663 | 0.1943 | 0.3915 | 0.3915 | nan | 0.3915 | 0.0 | 0.3887 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.34.1
|
84 |
+
- Pytorch 2.1.0+cpu
|
85 |
+
- Datasets 2.14.6
|
86 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 338777478
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:767f780658fe77e1afa560875baa4615b314949a424827bd0de82033cdb8f4e3
|
3 |
size 338777478
|