rishavranaut's picture
rishavranaut/Mistral_Task2_semantic_pred
03c1421 verified
---
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
license: apache-2.0
metrics:
- accuracy
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: Mistral_Task2_semantic_pred
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral_Task2_semantic_pred
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2310
- Accuracy: 0.7327
- Precision: 0.7327
- Recall: 0.7327
- F1 score: 0.7327
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| 1.0308 | 0.5208 | 200 | 0.9212 | 0.7014 | 0.7014 | 0.7014 | 0.7014 |
| 0.6176 | 1.0417 | 400 | 0.9613 | 0.6884 | 0.6884 | 0.6884 | 0.6884 |
| 0.3639 | 1.5625 | 600 | 1.6970 | 0.6089 | 0.6089 | 0.6089 | 0.6089 |
| 0.3578 | 2.0833 | 800 | 1.4605 | 0.6219 | 0.6219 | 0.6219 | 0.6219 |
| 0.2448 | 2.6042 | 1000 | 0.8444 | 0.7419 | 0.7419 | 0.7419 | 0.7419 |
| 0.2156 | 3.125 | 1200 | 1.0639 | 0.7171 | 0.7171 | 0.7171 | 0.7171 |
| 0.1641 | 3.6458 | 1400 | 1.3295 | 0.7132 | 0.7132 | 0.7132 | 0.7132 |
| 0.1687 | 4.1667 | 1600 | 0.8896 | 0.7731 | 0.7731 | 0.7731 | 0.7731 |
| 0.1074 | 4.6875 | 1800 | 1.2310 | 0.7327 | 0.7327 | 0.7327 | 0.7327 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1