File size: 82,843 Bytes
5f3dd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
# coding=utf-8
# Copyright 2021 The LG AI Research EXAONE Lab
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LG AI Research EXAONE Lab"""
import sys
import os
from typing import List, Optional, Tuple, Union
from packaging import version

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
import torch.nn.functional as F

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import AttentionMaskConverter

from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    CausalLMOutputWithPast,
    SequenceClassifierOutputWithPast,
    QuestionAnsweringModelOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
)
from .configuration_exaone import ExaoneConfig
from torch.nn.utils import skip_init
import math
import numpy as np
from typing import List, Optional, Tuple, Union


if is_flash_attn_2_available():
    try:
        import inspect
        from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
        from flash_attn import flash_attn_func, flash_attn_varlen_func

        _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)

        import flash_attn
        if version.parse(flash_attn.__version__) > version.parse('2.4.2'):
            from flash_attn.ops.triton.layer_norm import rms_norm_fn
        else:
            from flash_attn.ops.triton.layernorm import rms_norm_fn
    except:
        pass


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "exaone"
_CONFIG_FOR_DOC = "ExaoneConfig"

EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "exaone",
]


@torch.jit.script
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """

    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,

    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)

    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.



    Args:

        q (`torch.Tensor`): The query tensor.

        k (`torch.Tensor`): The key tensor.

        cos (`torch.Tensor`): The cosine part of the rotary embedding.

        sin (`torch.Tensor`): The sine part of the rotary embedding.

        unsqueeze_dim (`int`, *optional*, defaults to 1):

            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and

            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note

            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and

            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes

            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have

            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.

    Returns:

        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.

    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def rotate_half(x):
    """ Rotates half the hidden dims of the input. """
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# copied from llama
def _prepare_4d_causal_attention_mask_with_cache_position(

    attention_mask: torch.Tensor,

    sequence_length: int,

    target_length: int,

    dtype: torch.dtype,

    device: torch.device,

    min_dtype: float,

    cache_position: torch.Tensor,

    batch_size: int,

):
    """

    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape

    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.



    Args:

        attention_mask (`torch.Tensor`):

            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.

        sequence_length (`int`):

            The sequence length being processed.

        target_length (`int`):

            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.

        dtype (`torch.dtype`):

            The dtype to use for the 4D attention mask.

        device (`torch.device`):

            The device to plcae the 4D attention mask on.

        min_dtype (`float`):

            The minimum value representable with the dtype `dtype`.

        cache_position (`torch.Tensor`):

            Indices depicting the position of the input sequence tokens in the sequence.

        batch_size (`torch.Tensor`):

            Batch size.

    """
    if attention_mask is not None and attention_mask.dim() == 4:
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
        causal_mask = attention_mask
    else:
        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )

    return causal_mask


class ExaoneRMSNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(hidden_size))

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
        return self.weight * hidden_states.to(input_dtype)


class ExaoneTritonRMSNorm(torch.nn.Module):
    def __init__(

        self,

        hidden_size: int = 0,

        eps: float = 1e-5,

    ):
        super().__init__()
        self.eps = eps
        self.drop = None
        self.weight = torch.nn.Parameter(torch.empty(hidden_size))
        self.register_parameter("bias", None)
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)

    def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
        return rms_norm_fn(
            x,
            self.weight,
            self.bias,
            residual=residual,
            eps=self.eps,
            dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
            prenorm=prenorm,
            residual_in_fp32=residual_in_fp32,
        )


ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)


class ExaoneRotaryEmbedding(nn.Module):
    """

    Common description for the functions named `_compute_XXX_rope_parameters()`

        - Copied from `transformers.modeling_rope_utils` in v4.43, with some modifications.



        Computes the inverse frequencies with linear scaling. 

        The EXAONE model supports 'default', 'linear', 'dynamic', and 'yarn'.

        

        Args:

            config (:obj:`~transformers.PretrainedConfig`):

                The model configuration.

            device (:obj:`torch.device`):

                The device to use for initialization of the inverse frequencies.

            seq_len (:obj:`int`, `optional`):

                The current sequence length. Unused for this type of RoPE.

        Returns:

            Tuple of (:obj:`torch.Tensor`, :obj:`float`), containing the inverse frequencies for the RoPE embeddings and the

            post-processing scaling factor applied to the computed cos/sin (unused in some types of RoPE).

    """

    def _compute_default_rope_parameters(

        self,

        config: Optional[PretrainedConfig],

        device: Optional["torch.device"] = None,

        seq_len: Optional[int] = None,

    ) -> Tuple["torch.Tensor", float]:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)

        attention_factor = 1.0  # Unused in this type of RoPE

        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
        return inv_freq, attention_factor

    def _compute_linear_scaling_rope_parameters(

        self,

        config: Optional[PretrainedConfig],

        device: Optional["torch.device"] = None,

        seq_len: Optional[int] = None,

    ) -> Tuple["torch.Tensor", float]:
        factor = config.rope_scaling["factor"]
        if factor < 1.0:
            logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

        inv_freq, attention_factor = self._compute_default_rope_parameters(config, device, seq_len)
        inv_freq /= factor
        return inv_freq, attention_factor

    def _compute_dynamic_ntk_parameters(

        self,

        config: Optional[PretrainedConfig],

        device: Optional["torch.device"] = None,

        seq_len: Optional[int] = None,

    ) -> Tuple["torch.Tensor", float]:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
        max_position_embeddings = config.max_position_embeddings
        factor = config.rope_scaling["factor"]
        if factor < 1.0:
            logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

        attention_factor = 1.0  # Unused in this type of RoPE
        seq_len = seq_len if seq_len is not None else max_position_embeddings

        base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
        return inv_freq, attention_factor
    
    def _compute_yarn_parameters(

        self,

        config: PretrainedConfig, 

        device: "torch.device", 

        seq_len: Optional[int] = None, 

    ) -> Tuple["torch.Tensor", float]:
        base = config.rope_theta
        partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
        dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
        max_position_embeddings = config.max_position_embeddings
        factor = config.rope_scaling["factor"]
        if factor < 1.0:
            logger.warning_once(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")

        # Sets the attention factor as suggested in the paper
        attention_factor = config.rope_scaling.get("attention_factor")
        if attention_factor is None:
            attention_factor = 0.1 * math.log(factor) + 1.0
        if attention_factor < 0:
            logger.warning_once(
                f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
            )

        # Optional config options
        # beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
        beta_fast = config.rope_scaling.get("beta_fast") or 32
        beta_slow = config.rope_scaling.get("beta_slow") or 1
        if not isinstance(beta_fast, float):
            logger.warning_once(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
        if not isinstance(beta_slow, float):
            logger.warning_once(f"`rope_scaling`'s beta_slow field must be a float, got {beta_fast}")
        if beta_fast < beta_slow:
            logger.warning_once(
                f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
                f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
            )

        # Compute the inverse frequencies
        def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
            """Inverse dimension formula to find the dimension based on the number of rotations"""
            return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))

        def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
            """Find dimension range bounds based on rotations"""
            low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
            high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
            return max(low, 0), min(high, dim - 1)

        def linear_ramp_mask(min, max, dim):
            if min == max:
                max += 0.001  # Prevent singularity

            linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
            ramp_func = torch.clamp(linear_func, 0, 1)
            return ramp_func

        pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (factor * pos_freqs)

        low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)

        # Get n-dimensional rotational scaling corrected for extrapolation
        inv_freq_mask = 1 - linear_ramp_mask(low, high, dim // 2).float().to(device)
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        return inv_freq, attention_factor

    def __init__(self, config: ExaoneConfig, device=None):
        ROPE_INIT_FUNCTIONS = {
            "default": self._compute_default_rope_parameters,
            "linear": self._compute_linear_scaling_rope_parameters,
            "dynamic": self._compute_dynamic_ntk_parameters,
            "yarn": self._compute_yarn_parameters,
        }

        super().__init__()
        if config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        if self.rope_type not in ROPE_INIT_FUNCTIONS:
            raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _update_freq(self, position_ids, device):
        """

        dynamic RoPE layers should recompute `inv_freq` in the following situations:

        1 - growing beyond the cached sequence length (allow scaling)

        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)

        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len:  # expand to seq_len
            inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.max_seq_len = seq_len
        
        if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len:    # reset to original
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._update_freq(position_ids, device=x.device)

        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos, sin = emb.cos(), emb.sin()
        
        cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
        return cos.to(x.dtype), sin.to(x.dtype)


class ExaoneSelfAttention(nn.Module):
    def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.attention_dropout_rate = config.attention_dropout

        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
            )

        self.rotary = ExaoneRotaryEmbedding(config)
        
        self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        bsz, q_len, _ = hidden_states.size()
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            cos, sin = self.rotary(value_states, position_ids=position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:
            causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()

        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class ExaoneFlashAttention(ExaoneSelfAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if isinstance(past_key_value, StaticCache):
            raise ValueError(
                "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
                "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
            )

        output_attentions = False

        bsz, q_len, h_size = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            cos, sin = self.rotary(value_states, position_ids=position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            # Only update cache as shape of [bsz, n_head, q_len, head_dim]
            # TODO: need to be fixed when transformers' KV cache layout is changed
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        dropout_rate = self.attention_dropout_rate if self.training else 0.0

        attn_output = self._flash_attention_forward(
            query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
        )

        attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value
    
    @staticmethod
    def _flash_attention_forward(

        query_states: torch.Tensor,

        key_states: torch.Tensor,

        value_states: torch.Tensor,

        attention_mask: torch.Tensor,

        query_length: int,

        is_causal: bool,

        dropout: float = 0.0,

        softmax_scale: Optional[float] = None,

        sliding_window: Optional[int] = None,

        use_top_left_mask: bool = False,

        softcap: Optional[float] = None,

        deterministic: bool = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1",

    ):
        """

        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token

        first unpad the input, then computes the attention scores and pad the final attention scores.



        Args:

            query_states (`torch.Tensor`):

                Input query states to be passed to Flash Attention API

            key_states (`torch.Tensor`):

                Input key states to be passed to Flash Attention API

            value_states (`torch.Tensor`):

                Input value states to be passed to Flash Attention API

            attention_mask (`torch.Tensor`):

                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the

                position of padding tokens and 1 for the position of non-padding tokens.

            dropout (`float`):

                Attention dropout

            softmax_scale (`float`, *optional*):

                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)

            use_top_left_mask (`bool`, defaults to `False`):

                flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.

            softcap (`float`, *optional*):

                Softcap for the attention logits, used e.g. in gemma2.

            deterministic (`bool`, *optional*):

                Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.

        """
        if not use_top_left_mask:
            causal = is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
            causal = is_causal and query_length != 1

        # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
        use_sliding_windows = (
            _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
        )
        flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}

        if softcap is not None:
            flash_kwargs["softcap"] = softcap

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = ExaoneFlashAttention._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )
            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
                **flash_kwargs,
            )
            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
            )

        return attn_output
    
    @staticmethod
    def _upad_input(

        query_layer: torch.Tensor,

        key_layer: torch.Tensor,

        value_layer: torch.Tensor,

        attention_mask: torch.Tensor,

        query_length: int,

    ):
        """

        Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.



        This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary

        tensors for query, key, value tensors.



        Arguments:

            query_layer (`torch.Tensor`):

                Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).

            key_layer (`torch.Tensor`):

                Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).

            value_layer (`torch.Tensor`):

                Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).

            attention_mask (`torch.Tensor`):

                Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.

            query_length (`int`):

                Target length.



        Return:

            query_layer (`torch.Tensor):

                Query state without padding. Shape: (total_target_length, num_heads, head_dim).

            key_layer (`torch.Tensor`):

                Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).

            value_layer (`torch.Tensor`):

                Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).

            indices_q (`torch.Tensor`):

                The indices of non-masked tokens from the flattened input target sequence.

            (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):

                The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).

            (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):

                Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).

        """
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = ExaoneFlashAttention._get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )
    
    @staticmethod
    def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
        """

        Retrieves indexing data required to repad unpadded (ragged) tensors.



        Arguments:

            attention_mask (`torch.Tensor`):

                Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.



        Return:

            indices (`torch.Tensor):

                The indices of non-masked tokens from the flattened input sequence.

            cu_seqlens (`torch.Tensor`):

                The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).

            max_seqlen_in_batch (`int`):

                Maximum sequence length in batch.

        """
        seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
        indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
        max_seqlen_in_batch = seqlens_in_batch.max().item()
        cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
        return (
            indices,
            cu_seqlens,
            max_seqlen_in_batch,
        )


class ExaoneSdpaAttention(ExaoneSelfAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
    
    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        if output_attentions:
            logger.warning_once(
                "ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        if position_embeddings is None:
            cos, sin = self.rotary(value_states, position_ids=position_ids)
        else:
            cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:
            causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]        

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and causal_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        is_causal = True if causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout_rate if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


class ExaoneAttention(nn.Module):
    def __init__(self, config, layer_id=0):
        super().__init__()
        self.layer_id = layer_id
        if 'flash' in config._attn_implementation:
            self.attention = ExaoneFlashAttention(config, self.layer_id)
        elif 'sdpa' in config._attn_implementation:
            self.attention = ExaoneSdpaAttention(config, self.layer_id)
        else:
            self.attention = ExaoneSelfAttention(config, self.layer_id)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        return self.attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )


class ExaoneGatedMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size
        self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
        self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
        self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
        self.act = ACT2FN[config.activation_function]

    def forward(self, hidden_states):
        output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
        return output_proj


class ExaoneBlock(nn.Module):
    def __init__(self, config, layer_id):
        super().__init__()
        self.config = config
        hidden_size = config.hidden_size
        inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
        self.ln_1 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
        self.attn = ExaoneAttention(config, layer_id)
        self.ln_2 = ExaoneRMSNorm(hidden_size = hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = ExaoneGatedMLP(inner_dim, config)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_value: Optional[Cache] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        cache_position: Optional[torch.LongTensor] = None,

        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,

        **kwargs,

    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:

        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)

        hidden_states, self_attn_weights, present_key_value = self.attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        # residual connection
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class ExaonePreTrainedModel(PreTrainedModel):
    """

    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained

    models.

    """

    config_class = ExaoneConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["ExaoneBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, ExaoneRMSNorm):
            module.weight.data.fill_(1.0)


EXAONE_START_DOCSTRING = r"""



    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the

    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads

    etc.)



    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.

    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage

    and behavior.



    Parameters:

        config (:class:`~transformers.ExaoneConfig`): Model configuration class with all the parameters of the model.

            Initializing with a config file does not load the weights associated with the model, only the

            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.

"""

EXAONE_INPUTS_DOCSTRING = r"""

    Args:

        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):

            :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else

            ``past_key_values.get_seq_length()`` (``sequence_length`` of input past key value states). Indices of input

            sequence tokens in the vocabulary.



            If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be

            passed as ``input_ids``.



            `What are input IDs? <../glossary.html#input-ids>`__

        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):

            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.



            `What are attention masks? <../glossary.html#attention-mask>`__

        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):

            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,

            config.max_position_embeddings - 1]``.



            `What are position IDs? <../glossary.html#position-ids>`_

        past_key_values (:obj:`Cache`, `optional`):

            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see

            :obj:`past_key_values` output below). Can be used to speed up sequential decoding. This typically consists 

            in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or 

            `config.use_cache=True`.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):

            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.

            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated

            vectors than the model's internal embedding lookup matrix.



            If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see

            :obj:`past_key_values`).

        use_cache (:obj:`bool`, `optional`):

            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up

            decoding (see :obj:`past_key_values`).

        output_attentions (:obj:`bool`, `optional`):

            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned

            tensors for more detail.

        output_hidden_states (:obj:`bool`, `optional`):

            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for

            more detail.

        return_dict (:obj:`bool`, `optional`):

            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.

        cache_position (:obj:`torch.LongTensor` of shape :obj:`(sequence_length)`, `optional`):

            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,

            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer

            the complete sequence length.

"""


@add_start_docstrings(

    "The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",

    EXAONE_START_DOCSTRING,

)
class ExaoneModel(ExaonePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.embed_dim = config.hidden_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
        self.drop = nn.Dropout(float(config.embed_dropout))
        self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
        self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
        self.rotary = ExaoneRotaryEmbedding(config)
        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=BaseModelOutputWithPastAndCrossAttentions,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        past_key_values: Optional[Cache] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.shape[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        return_legacy_cache = False
        if (
            use_cache and not isinstance(past_key_values, Cache) and not self.training
        ):  # kept for BC (non `Cache` `past_key_values` inputs)
            return_legacy_cache = True
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            logger.warning_once(
                "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
                "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
            )

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds
        hidden_states = self.drop(hidden_states)

        position_embeddings = self.rotary(hidden_states, position_ids)

        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for block in self.h:
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                outputs = block(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )

            hidden_states = outputs[0]
            if use_cache:
                next_decoder_cache = outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (outputs[1],)

        hidden_states = self.ln_f(hidden_states)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
    
    # copied from llama
    def _update_causal_mask(

        self,

        attention_mask: torch.Tensor,

        input_tensor: torch.Tensor,

        cache_position: torch.Tensor,

        past_key_values: Cache,

        output_attentions: bool,

    ):
        # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
        # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
        # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
        # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114

        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            min_dtype=min_dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask


@add_start_docstrings(

    """

    The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input

    embeddings).

    """,

    EXAONE_START_DOCSTRING,

)
class ExaoneForCausalLM(ExaonePreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.transformer = ExaoneModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.config = config
        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=BaseModelOutputWithPast,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        past_key_values: Optional[Cache] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        cache_position: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
        r"""

        Args:

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set

                `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

                are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`



        Example:



        ```python

        >>> from transformers import AutoModelForCausalLM, AutoTokenizer



        >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",

                                                         trust_remote_code=True)

        >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")



        >>> prompt = "Explain how wonderful you are"

        >>> messages = [

            {"role": "system", "content": "You are a helpful assistant."},

            {"role": "user", "content": prompt}

        ]

        >>> input_ids = tokenizer.apply_chat_template(

            messages,

            tokenize=True,

            add_generation_prompt=True,

            return_tensors="pt"

        )



        >>> output = model.generate(input_ids, max_new_tokens=128)

        >>> tokenizer.decode(output[0], skip_special_tokens=True)

        "[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"

        ```

        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )
        hidden_states = transformer_outputs[0]
        lm_logits = self.lm_head(hidden_states)
        lm_logits = lm_logits.float()
        loss = None
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)

            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def prepare_inputs_for_generation(

        self,

        input_ids,

        past_key_values=None,

        attention_mask=None,

        inputs_embeds=None,

        cache_position=None,

        position_ids=None,

        use_cache=True,

        **kwargs,

    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
                position_ids = position_ids.clone(memory_format=torch.contiguous_format)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
            if inputs_embeds is not None:
                batch_size, sequence_length = inputs_embeds.shape
                device = inputs_embeds.device
            else:
                batch_size, sequence_length = input_ids.shape
                device = input_ids.device

            dtype = self.lm_head.weight.dtype
            min_dtype = torch.finfo(dtype).min

            attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
                attention_mask,
                sequence_length=sequence_length,
                target_length=past_key_values.get_max_length(),
                dtype=dtype,
                device=device,
                min_dtype=min_dtype,
                cache_position=cache_position,
                batch_size=batch_size,
            )

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past


@add_start_docstrings(

    """

    The EXAONE Model transformer with a sequence classification head on top (linear layer).



    :class:`~transformers.ExaoneForSequenceClassification` uses the last token in order to do the classification, as

    other causal models (e.g. GPT-1) do.



    Since it does classification on the last token, it requires to know the position of the last token. If a

    :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each

    row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot

    guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take

    the last value in each row of the batch).

    """,

    EXAONE_START_DOCSTRING,

)
class ExaoneForSequenceClassification(ExaonePreTrainedModel):
    _keys_to_ignore_on_load_missing = ["lm_head.weight"]
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = ExaoneModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=SequenceClassifierOutputWithPast,

        config_class=_CONFIG_FOR_DOC,

    )
    def forward(

        self,

        input_ids: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.Tensor] = None,

        past_key_values: Optional[Cache] = None,

        inputs_embeds: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
        r"""

        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):

            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,

            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If

            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape[:2]
        else:
            batch_size, sequence_length = inputs_embeds.shape[:2]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(

    """

    The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like

    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).

    """,

    EXAONE_START_DOCSTRING,

)
class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
    _keys_to_ignore_on_load_missing = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = ExaoneModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    def forward(

        self,

        input_ids: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.FloatTensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[Cache] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        start_positions: Optional[torch.LongTensor] = None,

        end_positions: Optional[torch.LongTensor] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
        r"""

        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):

            Labels for position (index) of the start of the labelled span for computing the token classification loss.

            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the

            sequence are not taken into account for computing the loss.

        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):

            Labels for position (index) of the end of the labelled span for computing the token classification loss.

            Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the

            sequence are not taken into account for computing the loss.

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1).to(start_logits.device)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1).to(end_logits.device)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )