ringhyacinth
commited on
Commit
·
8c9bbe5
1
Parent(s):
df648bb
Upload txt2img.py
Browse files- txt2img.py +290 -0
txt2img.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, os, sys, glob
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm, trange
|
7 |
+
from itertools import islice
|
8 |
+
from einops import rearrange
|
9 |
+
from torchvision.utils import make_grid
|
10 |
+
import time
|
11 |
+
from pytorch_lightning import seed_everything
|
12 |
+
from torch import autocast
|
13 |
+
from contextlib import contextmanager, nullcontext
|
14 |
+
|
15 |
+
from ldm.util import instantiate_from_config
|
16 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
17 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
18 |
+
|
19 |
+
|
20 |
+
def chunk(it, size):
|
21 |
+
it = iter(it)
|
22 |
+
return iter(lambda: tuple(islice(it, size)), ())
|
23 |
+
|
24 |
+
|
25 |
+
def load_model_from_config(config, ckpt, verbose=False):
|
26 |
+
print(f"Loading model from {ckpt}")
|
27 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
28 |
+
if "global_step" in pl_sd:
|
29 |
+
print(f"Global Step: {pl_sd['global_step']}")
|
30 |
+
sd = pl_sd["state_dict"]
|
31 |
+
model = instantiate_from_config(config.model)
|
32 |
+
m, u = model.load_state_dict(sd, strict=False)
|
33 |
+
if len(m) > 0 and verbose:
|
34 |
+
print("missing keys:")
|
35 |
+
print(m)
|
36 |
+
if len(u) > 0 and verbose:
|
37 |
+
print("unexpected keys:")
|
38 |
+
print(u)
|
39 |
+
|
40 |
+
model.cuda()
|
41 |
+
model.eval()
|
42 |
+
return model
|
43 |
+
|
44 |
+
|
45 |
+
def main():
|
46 |
+
parser = argparse.ArgumentParser()
|
47 |
+
|
48 |
+
parser.add_argument(
|
49 |
+
"--prompt",
|
50 |
+
type=str,
|
51 |
+
nargs="?",
|
52 |
+
default="a painting of a virus monster playing guitar",
|
53 |
+
help="the prompt to render"
|
54 |
+
)
|
55 |
+
|
56 |
+
parser.add_argument(
|
57 |
+
"--outdir",
|
58 |
+
type=str,
|
59 |
+
nargs="?",
|
60 |
+
help="dir to write results to",
|
61 |
+
default="outputs/txt2img-samples"
|
62 |
+
)
|
63 |
+
|
64 |
+
parser.add_argument(
|
65 |
+
"--skip_grid",
|
66 |
+
action='store_true',
|
67 |
+
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
68 |
+
)
|
69 |
+
|
70 |
+
parser.add_argument(
|
71 |
+
"--skip_save",
|
72 |
+
action='store_true',
|
73 |
+
help="do not save indiviual samples. For speed measurements.",
|
74 |
+
)
|
75 |
+
|
76 |
+
parser.add_argument(
|
77 |
+
"--ddim_steps",
|
78 |
+
type=str,
|
79 |
+
default="50",
|
80 |
+
help="number of ddim sampling steps",
|
81 |
+
)
|
82 |
+
|
83 |
+
parser.add_argument(
|
84 |
+
"--plms",
|
85 |
+
action='store_true',
|
86 |
+
help="use plms sampling",
|
87 |
+
)
|
88 |
+
parser.add_argument(
|
89 |
+
"--fixed_code",
|
90 |
+
action='store_true',
|
91 |
+
help="if enabled, uses the same starting code across all samples ",
|
92 |
+
)
|
93 |
+
|
94 |
+
parser.add_argument(
|
95 |
+
"--ddim_eta",
|
96 |
+
type=str,
|
97 |
+
default="0.0",
|
98 |
+
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--n_iter",
|
102 |
+
type=int,
|
103 |
+
default=1,
|
104 |
+
help="sample this often",
|
105 |
+
)
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--H",
|
109 |
+
type=int,
|
110 |
+
default=256,
|
111 |
+
help="image height, in pixel space",
|
112 |
+
)
|
113 |
+
|
114 |
+
parser.add_argument(
|
115 |
+
"--W",
|
116 |
+
type=int,
|
117 |
+
default=256,
|
118 |
+
help="image width, in pixel space",
|
119 |
+
)
|
120 |
+
|
121 |
+
parser.add_argument(
|
122 |
+
"--C",
|
123 |
+
type=int,
|
124 |
+
default=4,
|
125 |
+
help="latent channels",
|
126 |
+
)
|
127 |
+
parser.add_argument(
|
128 |
+
"--f",
|
129 |
+
type=int,
|
130 |
+
default=8,
|
131 |
+
help="downsampling factor, most often 8 or 16",
|
132 |
+
)
|
133 |
+
|
134 |
+
parser.add_argument(
|
135 |
+
"--n_samples",
|
136 |
+
type=str,
|
137 |
+
default="8",
|
138 |
+
help="how many samples to produce for each given prompt. A.k.a batch size",
|
139 |
+
)
|
140 |
+
|
141 |
+
parser.add_argument(
|
142 |
+
"--n_rows",
|
143 |
+
type=int,
|
144 |
+
default=0,
|
145 |
+
help="rows in the grid (default: n_samples)",
|
146 |
+
)
|
147 |
+
|
148 |
+
parser.add_argument(
|
149 |
+
"--scale",
|
150 |
+
type=str,
|
151 |
+
default='5.0',
|
152 |
+
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
153 |
+
)
|
154 |
+
|
155 |
+
parser.add_argument(
|
156 |
+
"--dyn",
|
157 |
+
type=float,
|
158 |
+
help="dynamic thresholding from Imagen, in latent space (TODO: try in pixel space with intermediate decode)",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--from-file",
|
162 |
+
type=str,
|
163 |
+
help="if specified, load prompts from this file",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--config",
|
167 |
+
type=str,
|
168 |
+
default="logs/f8-kl-clip-encoder-256x256-run1/configs/2022-06-01T22-11-40-project.yaml",
|
169 |
+
help="path to config which constructs model",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--ckpt",
|
173 |
+
type=str,
|
174 |
+
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
|
175 |
+
help="path to checkpoint of model",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--seed",
|
179 |
+
type=int,
|
180 |
+
default=42,
|
181 |
+
help="the seed (for reproducible sampling)",
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--precision",
|
185 |
+
type=str,
|
186 |
+
help="evaluate at this precision",
|
187 |
+
choices=["full", "autocast"],
|
188 |
+
default="autocast"
|
189 |
+
)
|
190 |
+
opt = parser.parse_args()
|
191 |
+
opt.n_samples = int(opt.n_samples)
|
192 |
+
opt.ddim_steps = int(opt.ddim_steps)
|
193 |
+
opt.scale = float(opt.scale)
|
194 |
+
opt.ddim_eta = float(opt.ddim_eta)
|
195 |
+
opt.seed = int(opt.seed)
|
196 |
+
seed_everything(opt.seed)
|
197 |
+
|
198 |
+
config = OmegaConf.load(f"{opt.config}")
|
199 |
+
model = load_model_from_config(config, f"{opt.ckpt}")
|
200 |
+
|
201 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
202 |
+
model = model.to(device)
|
203 |
+
|
204 |
+
if opt.plms:
|
205 |
+
sampler = PLMSSampler(model)
|
206 |
+
else:
|
207 |
+
sampler = DDIMSampler(model)
|
208 |
+
|
209 |
+
os.makedirs(opt.outdir, exist_ok=True)
|
210 |
+
outpath = opt.outdir
|
211 |
+
|
212 |
+
batch_size = opt.n_samples
|
213 |
+
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
214 |
+
if not opt.from_file:
|
215 |
+
prompt = opt.prompt
|
216 |
+
assert prompt is not None
|
217 |
+
data = [batch_size * [prompt]]
|
218 |
+
|
219 |
+
else:
|
220 |
+
print(f"reading prompts from {opt.from_file}")
|
221 |
+
with open(opt.from_file, "r") as f:
|
222 |
+
data = f.read().splitlines()
|
223 |
+
data = list(chunk(data, batch_size))
|
224 |
+
|
225 |
+
sample_path = os.path.join(outpath, "samples")
|
226 |
+
os.makedirs(sample_path, exist_ok=True)
|
227 |
+
base_count = len(os.listdir(sample_path))
|
228 |
+
grid_count = len(os.listdir(outpath)) - 1
|
229 |
+
|
230 |
+
start_code = None
|
231 |
+
if opt.fixed_code:
|
232 |
+
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
233 |
+
|
234 |
+
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
235 |
+
with torch.no_grad():
|
236 |
+
with precision_scope("cuda"):
|
237 |
+
with model.ema_scope():
|
238 |
+
tic = time.time()
|
239 |
+
all_samples = list()
|
240 |
+
for n in trange(opt.n_iter, desc="Sampling"):
|
241 |
+
for prompts in tqdm(data, desc="data"):
|
242 |
+
uc = None
|
243 |
+
if opt.scale != 1.0:
|
244 |
+
uc = model.get_learned_conditioning(batch_size * [""])
|
245 |
+
if isinstance(prompts, tuple):
|
246 |
+
prompts = list(prompts)
|
247 |
+
c = model.get_learned_conditioning(prompts)
|
248 |
+
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
249 |
+
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
250 |
+
conditioning=c,
|
251 |
+
batch_size=opt.n_samples,
|
252 |
+
shape=shape,
|
253 |
+
verbose=False,
|
254 |
+
unconditional_guidance_scale=opt.scale,
|
255 |
+
unconditional_conditioning=uc,
|
256 |
+
eta=opt.ddim_eta,
|
257 |
+
dynamic_threshold=opt.dyn,
|
258 |
+
x_T=start_code)
|
259 |
+
|
260 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
261 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
262 |
+
|
263 |
+
if not opt.skip_save:
|
264 |
+
for x_sample in x_samples_ddim:
|
265 |
+
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
266 |
+
Image.fromarray(x_sample.astype(np.uint8)).save(
|
267 |
+
os.path.join(sample_path, f"{base_count:05}.png"))
|
268 |
+
base_count += 1
|
269 |
+
all_samples.append(x_samples_ddim)
|
270 |
+
|
271 |
+
if not opt.skip_grid:
|
272 |
+
# additionally, save as grid
|
273 |
+
grid = torch.stack(all_samples, 0)
|
274 |
+
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
275 |
+
grid = make_grid(grid, nrow=n_rows)
|
276 |
+
|
277 |
+
# to image
|
278 |
+
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
279 |
+
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
280 |
+
grid_count += 1
|
281 |
+
|
282 |
+
toc = time.time()
|
283 |
+
|
284 |
+
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
285 |
+
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
286 |
+
f" \nEnjoy.")
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
main()
|