File size: 1,925 Bytes
863e7a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sa-tapera
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sa-tapera

This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5534
- Accuracy: 0.8973
- Precision: 0.9031
- Recall: 0.8973
- F1: 0.8997

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5638        | 1.0   | 107  | 0.4124          | 0.8527   | 0.8624    | 0.8429 | 0.8504 |
| 0.1947        | 2.0   | 214  | 0.4518          | 0.8938   | 0.9112    | 0.8840 | 0.8933 |
| 0.0754        | 3.0   | 321  | 0.5060          | 0.8904   | 0.8937    | 0.8967 | 0.8950 |
| 0.0192        | 4.0   | 428  | 0.5699          | 0.8973   | 0.9016    | 0.8962 | 0.8981 |
| 0.0092        | 5.0   | 535  | 0.5534          | 0.8973   | 0.9031    | 0.8973 | 0.8997 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1