File size: 6,619 Bytes
e9c5390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import torch
import torch.nn as nn
from torch.nn.init import trunc_normal_
from transformers.activations import ACT2FN


class FFN(nn.Module):
    """
    Feed-Forward Network module.

    Args:
        embed_dim (int): Input embedding dimension.
        ff_dim (int): Hidden dimension of the feed-forward network.
        output_dim (int): Output dimension.
    """

    def __init__(self, embed_dim, ff_dim, output_dim):
        super().__init__()
        self.linear_in = nn.Linear(embed_dim, ff_dim, bias=False)
        self.linear_out = nn.Linear(ff_dim, output_dim, bias=False)
        self.act = ACT2FN["gelu_new"]

    def forward(self, hidden_states):
        hidden_states = self.act(self.linear_in(hidden_states))
        hidden_states = self.linear_out(hidden_states)
        return hidden_states


class CrossAttention(nn.Module):
    """
    Cross-Attention module.

    Args:
        kv_dim (int): Dimension of key and value.
        embed_dim (int): Embedding dimension.
        num_heads (int): Number of attention heads.
        drop_out_rate (float): Dropout rate. Default is 0.
    """

    def __init__(self, kv_dim, embed_dim, num_heads, drop_out_rate=0):
        super().__init__()
        self.num_heads = num_heads
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False)
        self.k_proj = nn.Linear(kv_dim, embed_dim, bias=False)
        self.v_proj = nn.Linear(kv_dim, embed_dim, bias=False)

        self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        self.linear = nn.Linear(embed_dim, embed_dim)
        self.dropout = nn.Dropout(drop_out_rate)

        self.layer_norm = nn.LayerNorm(embed_dim)
        self.ln_kv = nn.LayerNorm(kv_dim)

    def forward(self, x, hidden_states, attn_mask=None, add_residual=False):
        """
        Forward pass of the CrossAttention module.

        Args:
            x (torch.Tensor): Input tensor for key and value.
            hidden_states (torch.Tensor): Input tensor for query.
            attn_mask (torch.Tensor, optional): Attention mask. Default is None.
            add_residual (bool): Whether to add residual connection. Default is False.

        Returns:
            torch.Tensor: Output tensor after cross-attention.
        """
        normed_hidden_states = self.layer_norm(hidden_states)
        query = self.q_proj(normed_hidden_states).permute(1, 0, 2)

        x = self.ln_kv(x)
        key = self.k_proj(x).permute(1, 0, 2)
        value = self.v_proj(x).permute(1, 0, 2)

        attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)

        attn_output = attn_output.permute(1, 0, 2)

        if add_residual:
            attn_output = hidden_states + self.dropout(self.linear(attn_output))
        else:
            attn_output = self.dropout(self.linear(attn_output))

        return attn_output


class AriaProjector(nn.Module):
    """
    A projection module with one cross attention layer and one FFN layer, which projects ViT's outputs into MoE's inputs.

    Args:
        patch_to_query_dict (dict): Maps patch numbers to their corresponding query numbers,
            e.g., {1225: 128, 4900: 256}. This allows for different query sizes based on image resolution.
        embed_dim (int): Embedding dimension.
        num_heads (int): Number of attention heads.
        kv_dim (int): Dimension of key and value.
        ff_dim (int): Hidden dimension of the feed-forward network.
        output_dim (int): Output dimension.
        norm_layer (nn.Module): Normalization layer. Default is nn.LayerNorm.

    Outputs:
        A tensor with the shape of (batch_size, query_number, output_dim)
    """

    def __init__(
        self,
        patch_to_query_dict,
        embed_dim,
        num_heads,
        kv_dim,
        ff_dim,
        output_dim,
        norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.patch_to_query_dict = patch_to_query_dict
        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.query = nn.Parameter(
            torch.zeros(max(patch_to_query_dict.values()), self.embed_dim)
        )

        trunc_normal_(self.query, std=0.02)

        self.cross_attn = CrossAttention(kv_dim, embed_dim, num_heads)

        self.ln_ffn = norm_layer(embed_dim)
        self.ffn = FFN(embed_dim, ff_dim, output_dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, attn_mask=None):
        """
        Forward pass of the Projector module.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, num_patches, kv_dim).
            attn_mask (torch.Tensor, optional): Attention mask. Default is None.

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, query_number, output_dim).
        """
        bs = x.shape[0]
        queries = self.query.unsqueeze(0).repeat(bs, 1, 1)

        query_num = self.patch_to_query_dict.get(x.shape[1], None)
        assert (
            query_num is not None
        ), f"Query number for {x.shape[1]} patches is not provided"

        queries = queries[:, :query_num, :]

        if attn_mask is not None:
            attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
            attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)

        attention_out = self.cross_attn(x, queries, attn_mask=attn_mask)

        out = self.ffn(self.ln_ffn(attention_out))

        return out