Upload folder using huggingface_hub
Browse files- model_index.json +27 -0
- pipeline_allegro.py +832 -0
- scheduler/scheduler_config.json +13 -0
- text_encoder/config.json +30 -0
- text_encoder/pytorch_model-00001-of-00002.bin +3 -0
- text_encoder/pytorch_model-00002-of-00002.bin +3 -0
- text_encoder/pytorch_model.bin.index.json +227 -0
- tokenizer/added_tokens.json +102 -0
- tokenizer/special_tokens_map.json +125 -0
- tokenizer/spiece.model +3 -0
- tokenizer/tokenizer_config.json +940 -0
- transformer/config.json +39 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- transformer/transformer_3d_allegro.py +1776 -0
- vae/config.json +41 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
- vae/vae_allegro.py +978 -0
model_index.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": [
|
3 |
+
"pipeline_allegro",
|
4 |
+
"AllegroPipeline"
|
5 |
+
],
|
6 |
+
"_diffusers_version": "0.28.0",
|
7 |
+
"scheduler": [
|
8 |
+
"diffusers",
|
9 |
+
"EulerAncestralDiscreteScheduler"
|
10 |
+
],
|
11 |
+
"text_encoder": [
|
12 |
+
"transformers",
|
13 |
+
"T5EncoderModel"
|
14 |
+
],
|
15 |
+
"tokenizer": [
|
16 |
+
"transformers",
|
17 |
+
"T5Tokenizer"
|
18 |
+
],
|
19 |
+
"transformer": [
|
20 |
+
"transformer_3d_allegro",
|
21 |
+
"AllegroTransformer3DModel"
|
22 |
+
],
|
23 |
+
"vae": [
|
24 |
+
"vae_allegro",
|
25 |
+
"AllegroAutoencoderKL3D"
|
26 |
+
]
|
27 |
+
}
|
pipeline_allegro.py
ADDED
@@ -0,0 +1,832 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import html
|
11 |
+
import inspect
|
12 |
+
import math
|
13 |
+
import re
|
14 |
+
import urllib.parse as ul
|
15 |
+
from typing import Callable, List, Optional, Tuple, Union
|
16 |
+
from einops import rearrange
|
17 |
+
import ftfy
|
18 |
+
import torch
|
19 |
+
from dataclasses import dataclass
|
20 |
+
import tqdm
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
|
23 |
+
from diffusers import DiffusionPipeline, ModelMixin
|
24 |
+
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
25 |
+
from diffusers.utils import (
|
26 |
+
BACKENDS_MAPPING,
|
27 |
+
is_bs4_available,
|
28 |
+
is_ftfy_available,
|
29 |
+
logging,
|
30 |
+
replace_example_docstring,
|
31 |
+
BaseOutput
|
32 |
+
)
|
33 |
+
from diffusers.utils.torch_utils import randn_tensor
|
34 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
# from transformer_3d_allegro import AllegroTransformer3DModel
|
39 |
+
# from vae_allegro import AllegroAutoencoderKL3D
|
40 |
+
@dataclass
|
41 |
+
class AllegroPipelineOutput(BaseOutput):
|
42 |
+
r"""
|
43 |
+
Output class for Allegro pipelines.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
video (`torch.Tensor`):
|
47 |
+
Torch tensor with shape `(batch_size, num_frames, channels, height, width)`.
|
48 |
+
"""
|
49 |
+
video: torch.Tensor
|
50 |
+
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import torch
|
56 |
+
|
57 |
+
>>> # You can replace the your_path_to_model with your own path.
|
58 |
+
>>> pipe = AllegroPipeline.from_pretrained(your_path_to_model, torch_dtype=torch.float16, trust_remote_code=True)
|
59 |
+
|
60 |
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
61 |
+
>>> image = pipe(prompt).video[0]
|
62 |
+
```
|
63 |
+
"""
|
64 |
+
|
65 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
66 |
+
def retrieve_timesteps(
|
67 |
+
scheduler,
|
68 |
+
num_inference_steps: Optional[int] = None,
|
69 |
+
device: Optional[Union[str, torch.device]] = None,
|
70 |
+
timesteps: Optional[List[int]] = None,
|
71 |
+
**kwargs,
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
75 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
scheduler (`SchedulerMixin`):
|
79 |
+
The scheduler to get timesteps from.
|
80 |
+
num_inference_steps (`int`):
|
81 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
82 |
+
must be `None`.
|
83 |
+
device (`str` or `torch.device`, *optional*):
|
84 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
85 |
+
timesteps (`List[int]`, *optional*):
|
86 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
87 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
88 |
+
must be `None`.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
92 |
+
second element is the number of inference steps.
|
93 |
+
"""
|
94 |
+
if timesteps is not None:
|
95 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
96 |
+
if not accepts_timesteps:
|
97 |
+
raise ValueError(
|
98 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
99 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
100 |
+
)
|
101 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
102 |
+
timesteps = scheduler.timesteps
|
103 |
+
num_inference_steps = len(timesteps)
|
104 |
+
else:
|
105 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
106 |
+
timesteps = scheduler.timesteps
|
107 |
+
return timesteps, num_inference_steps
|
108 |
+
|
109 |
+
|
110 |
+
class AllegroPipeline(DiffusionPipeline):
|
111 |
+
r"""
|
112 |
+
Pipeline for text-to-image generation using Allegro.
|
113 |
+
|
114 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
115 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
116 |
+
|
117 |
+
Args:
|
118 |
+
vae ([`AllegroAutoEncoderKL3D`]):
|
119 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
120 |
+
text_encoder ([`T5EncoderModel`]):
|
121 |
+
Frozen text-encoder. PixArt-Alpha uses
|
122 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
123 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
124 |
+
tokenizer (`T5Tokenizer`):
|
125 |
+
Tokenizer of class
|
126 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
127 |
+
transformer ([`AllegroTransformer3DModel`]):
|
128 |
+
A text conditioned `AllegroTransformer3DModel` to denoise the encoded image latents.
|
129 |
+
scheduler ([`SchedulerMixin`]):
|
130 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
131 |
+
"""
|
132 |
+
bad_punct_regex = re.compile(
|
133 |
+
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
|
134 |
+
) # noqa
|
135 |
+
|
136 |
+
_optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"]
|
137 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
tokenizer: Optional[T5Tokenizer] = None,
|
142 |
+
text_encoder: Optional[T5EncoderModel] = None,
|
143 |
+
vae: Optional[ModelMixin] = None,
|
144 |
+
transformer: Optional[ModelMixin] = None,
|
145 |
+
scheduler: Optional[EulerAncestralDiscreteScheduler] = None,
|
146 |
+
device: torch.device = torch.device("cuda"),
|
147 |
+
dtype: torch.dtype = torch.float16,
|
148 |
+
):
|
149 |
+
super().__init__()
|
150 |
+
# # init
|
151 |
+
# if tokenizer is None:
|
152 |
+
# tokenizer = T5Tokenizer.from_pretrained(tokenizer)
|
153 |
+
# if text_encoder is None:
|
154 |
+
# text_encoder = T5EncoderModel.from_pretrained(text_encoder, torch_dtype=torch.float16)
|
155 |
+
# if vae is None:
|
156 |
+
# vae = AllegroAutoencoderKL3D.from_pretrained(vae).to(dtype=torch.float32)
|
157 |
+
# if transformer is None:
|
158 |
+
# transformer = AllegroTransformer3DModel.from_pretrained(transformer, torch_dtype=dtype)
|
159 |
+
# if scheduler is None:
|
160 |
+
# scheduler = EulerAncestralDiscreteScheduler()
|
161 |
+
self.register_modules(
|
162 |
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
167 |
+
def encode_prompt(
|
168 |
+
self,
|
169 |
+
prompt: Union[str, List[str]],
|
170 |
+
do_classifier_free_guidance: bool = True,
|
171 |
+
negative_prompt: str = "",
|
172 |
+
num_images_per_prompt: int = 1,
|
173 |
+
device: Optional[torch.device] = None,
|
174 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
175 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
176 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
177 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
+
clean_caption: bool = False,
|
179 |
+
max_sequence_length: int = 120,
|
180 |
+
**kwargs,
|
181 |
+
):
|
182 |
+
r"""
|
183 |
+
Encodes the prompt into text encoder hidden states.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
prompt (`str` or `List[str]`, *optional*):
|
187 |
+
prompt to be encoded
|
188 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
189 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
190 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
191 |
+
PixArt-Alpha, this should be "".
|
192 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
193 |
+
whether to use classifier free guidance or not
|
194 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
195 |
+
number of images that should be generated per prompt
|
196 |
+
device: (`torch.device`, *optional*):
|
197 |
+
torch device to place the resulting embeddings on
|
198 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
199 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
200 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
201 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
202 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
203 |
+
string.
|
204 |
+
clean_caption (`bool`, defaults to `False`):
|
205 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
206 |
+
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt.
|
207 |
+
"""
|
208 |
+
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
|
209 |
+
|
210 |
+
if device is None:
|
211 |
+
device = self._execution_device
|
212 |
+
|
213 |
+
if prompt is not None and isinstance(prompt, str):
|
214 |
+
batch_size = 1
|
215 |
+
elif prompt is not None and isinstance(prompt, list):
|
216 |
+
batch_size = len(prompt)
|
217 |
+
else:
|
218 |
+
batch_size = prompt_embeds.shape[0]
|
219 |
+
|
220 |
+
# See Section 3.1. of the paper.
|
221 |
+
max_length = max_sequence_length
|
222 |
+
|
223 |
+
if prompt_embeds is None:
|
224 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
225 |
+
text_inputs = self.tokenizer(
|
226 |
+
prompt,
|
227 |
+
padding="max_length",
|
228 |
+
max_length=max_length,
|
229 |
+
truncation=True,
|
230 |
+
add_special_tokens=True,
|
231 |
+
return_tensors="pt",
|
232 |
+
)
|
233 |
+
text_input_ids = text_inputs.input_ids
|
234 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
235 |
+
|
236 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
237 |
+
text_input_ids, untruncated_ids
|
238 |
+
):
|
239 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
240 |
+
logger.warning(
|
241 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
242 |
+
f" {max_length} tokens: {removed_text}"
|
243 |
+
)
|
244 |
+
|
245 |
+
prompt_attention_mask = text_inputs.attention_mask
|
246 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
247 |
+
|
248 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
249 |
+
prompt_embeds = prompt_embeds[0]
|
250 |
+
|
251 |
+
if self.text_encoder is not None:
|
252 |
+
dtype = self.text_encoder.dtype
|
253 |
+
elif self.transformer is not None:
|
254 |
+
dtype = self.transformer.dtype
|
255 |
+
else:
|
256 |
+
dtype = None
|
257 |
+
|
258 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
259 |
+
|
260 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
261 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
262 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
263 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
264 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
265 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
266 |
+
|
267 |
+
# get unconditional embeddings for classifier free guidance
|
268 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
269 |
+
uncond_tokens = [negative_prompt] * batch_size
|
270 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
271 |
+
max_length = prompt_embeds.shape[1]
|
272 |
+
uncond_input = self.tokenizer(
|
273 |
+
uncond_tokens,
|
274 |
+
padding="max_length",
|
275 |
+
max_length=max_length,
|
276 |
+
truncation=True,
|
277 |
+
return_attention_mask=True,
|
278 |
+
add_special_tokens=True,
|
279 |
+
return_tensors="pt",
|
280 |
+
)
|
281 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
282 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
283 |
+
|
284 |
+
negative_prompt_embeds = self.text_encoder(
|
285 |
+
uncond_input.input_ids.to(device),
|
286 |
+
attention_mask=negative_prompt_attention_mask,
|
287 |
+
)
|
288 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
289 |
+
|
290 |
+
if do_classifier_free_guidance:
|
291 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
292 |
+
seq_len = negative_prompt_embeds.shape[1]
|
293 |
+
|
294 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
295 |
+
|
296 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
297 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
298 |
+
|
299 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
300 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
301 |
+
else:
|
302 |
+
negative_prompt_embeds = None
|
303 |
+
negative_prompt_attention_mask = None
|
304 |
+
|
305 |
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
306 |
+
|
307 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
308 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
309 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
310 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
311 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
312 |
+
# and should be between [0, 1]
|
313 |
+
|
314 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
315 |
+
extra_step_kwargs = {}
|
316 |
+
if accepts_eta:
|
317 |
+
extra_step_kwargs["eta"] = eta
|
318 |
+
|
319 |
+
# check if the scheduler accepts generator
|
320 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
321 |
+
if accepts_generator:
|
322 |
+
extra_step_kwargs["generator"] = generator
|
323 |
+
return extra_step_kwargs
|
324 |
+
|
325 |
+
def check_inputs(
|
326 |
+
self,
|
327 |
+
prompt,
|
328 |
+
num_frames,
|
329 |
+
height,
|
330 |
+
width,
|
331 |
+
negative_prompt,
|
332 |
+
callback_steps,
|
333 |
+
prompt_embeds=None,
|
334 |
+
negative_prompt_embeds=None,
|
335 |
+
prompt_attention_mask=None,
|
336 |
+
negative_prompt_attention_mask=None,
|
337 |
+
):
|
338 |
+
|
339 |
+
if num_frames <= 0:
|
340 |
+
raise ValueError(f"`num_frames` have to be positive but is {num_frames}.")
|
341 |
+
if height % 8 != 0 or width % 8 != 0:
|
342 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
343 |
+
|
344 |
+
if (callback_steps is None) or (
|
345 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
346 |
+
):
|
347 |
+
raise ValueError(
|
348 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
349 |
+
f" {type(callback_steps)}."
|
350 |
+
)
|
351 |
+
|
352 |
+
if prompt is not None and prompt_embeds is not None:
|
353 |
+
raise ValueError(
|
354 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
355 |
+
" only forward one of the two."
|
356 |
+
)
|
357 |
+
elif prompt is None and prompt_embeds is None:
|
358 |
+
raise ValueError(
|
359 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
360 |
+
)
|
361 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
362 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
363 |
+
|
364 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
365 |
+
raise ValueError(
|
366 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
367 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
368 |
+
)
|
369 |
+
|
370 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
371 |
+
raise ValueError(
|
372 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
373 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
374 |
+
)
|
375 |
+
|
376 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
377 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
378 |
+
|
379 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
380 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
381 |
+
|
382 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
383 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
384 |
+
raise ValueError(
|
385 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
386 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
387 |
+
f" {negative_prompt_embeds.shape}."
|
388 |
+
)
|
389 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
390 |
+
raise ValueError(
|
391 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
392 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
393 |
+
f" {negative_prompt_attention_mask.shape}."
|
394 |
+
)
|
395 |
+
|
396 |
+
|
397 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
398 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
399 |
+
if clean_caption and not is_bs4_available():
|
400 |
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
401 |
+
logger.warning("Setting `clean_caption` to False...")
|
402 |
+
clean_caption = False
|
403 |
+
|
404 |
+
if clean_caption and not is_ftfy_available():
|
405 |
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
406 |
+
logger.warning("Setting `clean_caption` to False...")
|
407 |
+
clean_caption = False
|
408 |
+
|
409 |
+
if not isinstance(text, (tuple, list)):
|
410 |
+
text = [text]
|
411 |
+
|
412 |
+
def process(text: str):
|
413 |
+
if clean_caption:
|
414 |
+
text = self._clean_caption(text)
|
415 |
+
text = self._clean_caption(text)
|
416 |
+
else:
|
417 |
+
text = text.lower().strip()
|
418 |
+
return text
|
419 |
+
|
420 |
+
return [process(t) for t in text]
|
421 |
+
|
422 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
423 |
+
def _clean_caption(self, caption):
|
424 |
+
caption = str(caption)
|
425 |
+
caption = ul.unquote_plus(caption)
|
426 |
+
caption = caption.strip().lower()
|
427 |
+
caption = re.sub("<person>", "person", caption)
|
428 |
+
# urls:
|
429 |
+
caption = re.sub(
|
430 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
431 |
+
# noqa
|
432 |
+
"",
|
433 |
+
caption,
|
434 |
+
) # regex for urls
|
435 |
+
caption = re.sub(
|
436 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
437 |
+
# noqa
|
438 |
+
"",
|
439 |
+
caption,
|
440 |
+
) # regex for urls
|
441 |
+
# html:
|
442 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
443 |
+
|
444 |
+
# @<nickname>
|
445 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
446 |
+
|
447 |
+
# 31C0—31EF CJK Strokes
|
448 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
449 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
450 |
+
# 3300—33FF CJK Compatibility
|
451 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
452 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
453 |
+
# 4E00—9FFF CJK Unified Ideographs
|
454 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
455 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
456 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
457 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
458 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
459 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
460 |
+
# caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
461 |
+
#######################################################
|
462 |
+
|
463 |
+
# все виды тире / all types of dash --> "-"
|
464 |
+
caption = re.sub(
|
465 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",
|
466 |
+
# noqa
|
467 |
+
"-",
|
468 |
+
caption,
|
469 |
+
)
|
470 |
+
|
471 |
+
# кавычки к одному стандарту
|
472 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
473 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
474 |
+
|
475 |
+
# "
|
476 |
+
caption = re.sub(r""?", "", caption)
|
477 |
+
# &
|
478 |
+
caption = re.sub(r"&", "", caption)
|
479 |
+
|
480 |
+
# ip adresses:
|
481 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
482 |
+
|
483 |
+
# article ids:
|
484 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
485 |
+
|
486 |
+
# \n
|
487 |
+
caption = re.sub(r"\\n", " ", caption)
|
488 |
+
|
489 |
+
# "#123"
|
490 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
491 |
+
# "#12345.."
|
492 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
493 |
+
# "123456.."
|
494 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
495 |
+
# filenames:
|
496 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
497 |
+
|
498 |
+
#
|
499 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
500 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
501 |
+
|
502 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
503 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
504 |
+
|
505 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
506 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
507 |
+
if len(re.findall(regex2, caption)) > 3:
|
508 |
+
caption = re.sub(regex2, " ", caption)
|
509 |
+
|
510 |
+
caption = ftfy.fix_text(caption)
|
511 |
+
caption = html.unescape(html.unescape(caption))
|
512 |
+
|
513 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
514 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
515 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
516 |
+
|
517 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
518 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
519 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
520 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
521 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
522 |
+
|
523 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
524 |
+
|
525 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
526 |
+
|
527 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
528 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
529 |
+
caption = re.sub(r"\s+", " ", caption)
|
530 |
+
|
531 |
+
caption.strip()
|
532 |
+
|
533 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
534 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
535 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
536 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
537 |
+
return caption.strip()
|
538 |
+
|
539 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
540 |
+
def prepare_latents(
|
541 |
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
542 |
+
):
|
543 |
+
shape = (
|
544 |
+
batch_size,
|
545 |
+
num_channels_latents,
|
546 |
+
(math.ceil((int(num_frames) - 1) / self.vae.vae_scale_factor[0]) + 1)
|
547 |
+
if int(num_frames) % 2 == 1
|
548 |
+
else math.ceil(int(num_frames) / self.vae.vae_scale_factor[0]),
|
549 |
+
math.ceil(int(height) / self.vae.vae_scale_factor[1]),
|
550 |
+
math.ceil(int(width) / self.vae.vae_scale_factor[2]),
|
551 |
+
)
|
552 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
553 |
+
raise ValueError(
|
554 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
555 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
556 |
+
)
|
557 |
+
|
558 |
+
if latents is None:
|
559 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
560 |
+
else:
|
561 |
+
latents = latents.to(device)
|
562 |
+
|
563 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
564 |
+
latents = latents * self.scheduler.init_noise_sigma
|
565 |
+
|
566 |
+
|
567 |
+
return latents
|
568 |
+
|
569 |
+
@torch.no_grad()
|
570 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
571 |
+
def __call__(
|
572 |
+
self,
|
573 |
+
prompt: Union[str, List[str]] = None,
|
574 |
+
negative_prompt: str = "",
|
575 |
+
num_inference_steps: int = 100,
|
576 |
+
timesteps: List[int] = None,
|
577 |
+
guidance_scale: float = 7.5,
|
578 |
+
num_images_per_prompt: Optional[int] = 1,
|
579 |
+
num_frames: Optional[int] = None,
|
580 |
+
height: Optional[int] = None,
|
581 |
+
width: Optional[int] = None,
|
582 |
+
eta: float = 0.0,
|
583 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
584 |
+
latents: Optional[torch.FloatTensor] = None,
|
585 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
586 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
587 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
588 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
589 |
+
output_type: Optional[str] = "pil",
|
590 |
+
return_dict: bool = True,
|
591 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
592 |
+
callback_steps: int = 1,
|
593 |
+
clean_caption: bool = True,
|
594 |
+
max_sequence_length: int = 512,
|
595 |
+
verbose: bool = True,
|
596 |
+
) -> Union[AllegroPipelineOutput, Tuple]:
|
597 |
+
"""
|
598 |
+
Function invoked when calling the pipeline for generation.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
prompt (`str` or `List[str]`, *optional*):
|
602 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
603 |
+
instead.
|
604 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
605 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
606 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
607 |
+
less than `1`).
|
608 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
609 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
610 |
+
expense of slower inference.
|
611 |
+
timesteps (`List[int]`, *optional*):
|
612 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
613 |
+
timesteps are used. Must be in descending order.
|
614 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
615 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
616 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
617 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
618 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
619 |
+
usually at the expense of lower image quality.
|
620 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
621 |
+
The number of images to generate per prompt.
|
622 |
+
num_frames: (`int`, *optional*, defaults to 88):
|
623 |
+
The number controls the generated video frames.
|
624 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
625 |
+
The height in pixels of the generated image.
|
626 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
627 |
+
The width in pixels of the generated image.
|
628 |
+
eta (`float`, *optional*, defaults to 0.0):
|
629 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
630 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
631 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
632 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
633 |
+
to make generation deterministic.
|
634 |
+
latents (`torch.FloatTensor`, *optional*):
|
635 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
636 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
637 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
638 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
639 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
640 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
641 |
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
642 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
643 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
644 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
645 |
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
646 |
+
Pre-generated attention mask for negative text embeddings.
|
647 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
648 |
+
The output format of the generate image. Choose between
|
649 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
650 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
651 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
652 |
+
callback (`Callable`, *optional*):
|
653 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
654 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
655 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
656 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
657 |
+
called at every step.
|
658 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
659 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
660 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
661 |
+
prompt.
|
662 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
663 |
+
|
664 |
+
Examples:
|
665 |
+
|
666 |
+
Returns:
|
667 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
668 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
669 |
+
returned where the first element is a list with the generated images
|
670 |
+
"""
|
671 |
+
# 1. Check inputs. Raise error if not correct
|
672 |
+
num_frames = num_frames or self.transformer.config.sample_size_t * self.vae.vae_scale_factor[0]
|
673 |
+
height = height or self.transformer.config.sample_size[0] * self.vae.vae_scale_factor[1]
|
674 |
+
width = width or self.transformer.config.sample_size[1] * self.vae.vae_scale_factor[2]
|
675 |
+
|
676 |
+
self.check_inputs(
|
677 |
+
prompt,
|
678 |
+
num_frames,
|
679 |
+
height,
|
680 |
+
width,
|
681 |
+
negative_prompt,
|
682 |
+
callback_steps,
|
683 |
+
prompt_embeds,
|
684 |
+
negative_prompt_embeds,
|
685 |
+
prompt_attention_mask,
|
686 |
+
negative_prompt_attention_mask,
|
687 |
+
)
|
688 |
+
|
689 |
+
# 2. Default height and width to transformer
|
690 |
+
if prompt is not None and isinstance(prompt, str):
|
691 |
+
batch_size = 1
|
692 |
+
elif prompt is not None and isinstance(prompt, list):
|
693 |
+
batch_size = len(prompt)
|
694 |
+
else:
|
695 |
+
batch_size = prompt_embeds.shape[0]
|
696 |
+
|
697 |
+
device = self._execution_device
|
698 |
+
|
699 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
700 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
701 |
+
# corresponds to doing no classifier free guidance.
|
702 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
703 |
+
|
704 |
+
# 3. Encode input prompt
|
705 |
+
(
|
706 |
+
prompt_embeds,
|
707 |
+
prompt_attention_mask,
|
708 |
+
negative_prompt_embeds,
|
709 |
+
negative_prompt_attention_mask,
|
710 |
+
) = self.encode_prompt(
|
711 |
+
prompt,
|
712 |
+
do_classifier_free_guidance,
|
713 |
+
negative_prompt=negative_prompt,
|
714 |
+
num_images_per_prompt=num_images_per_prompt,
|
715 |
+
device=device,
|
716 |
+
prompt_embeds=prompt_embeds,
|
717 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
718 |
+
prompt_attention_mask=prompt_attention_mask,
|
719 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
720 |
+
clean_caption=clean_caption,
|
721 |
+
max_sequence_length=max_sequence_length,
|
722 |
+
)
|
723 |
+
if do_classifier_free_guidance:
|
724 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
725 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
726 |
+
|
727 |
+
# 4. Prepare timesteps
|
728 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
729 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
730 |
+
|
731 |
+
# 5. Prepare latents.
|
732 |
+
latent_channels = self.transformer.config.in_channels
|
733 |
+
latents = self.prepare_latents(
|
734 |
+
batch_size * num_images_per_prompt,
|
735 |
+
latent_channels,
|
736 |
+
num_frames,
|
737 |
+
height,
|
738 |
+
width,
|
739 |
+
prompt_embeds.dtype,
|
740 |
+
device,
|
741 |
+
generator,
|
742 |
+
latents,
|
743 |
+
)
|
744 |
+
|
745 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
746 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
747 |
+
|
748 |
+
# 6.1 Prepare micro-conditions.
|
749 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
750 |
+
|
751 |
+
# 7. Denoising loop
|
752 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
753 |
+
|
754 |
+
progress_wrap = tqdm.tqdm if verbose else (lambda x: x)
|
755 |
+
for i, t in progress_wrap(list(enumerate(timesteps))):
|
756 |
+
|
757 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
758 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
759 |
+
|
760 |
+
current_timestep = t
|
761 |
+
if not torch.is_tensor(current_timestep):
|
762 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
763 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
764 |
+
is_mps = latent_model_input.device.type == "mps"
|
765 |
+
if isinstance(current_timestep, float):
|
766 |
+
dtype = torch.float32 if is_mps else torch.float64
|
767 |
+
else:
|
768 |
+
dtype = torch.int32 if is_mps else torch.int64
|
769 |
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
770 |
+
elif len(current_timestep.shape) == 0:
|
771 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
772 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
773 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
774 |
+
|
775 |
+
if prompt_embeds.ndim == 3:
|
776 |
+
prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d
|
777 |
+
if prompt_attention_mask.ndim == 2:
|
778 |
+
prompt_attention_mask = prompt_attention_mask.unsqueeze(1) # b l -> b 1 l
|
779 |
+
# prepare attention_mask.
|
780 |
+
# b c t h w -> b t h w
|
781 |
+
attention_mask = torch.ones_like(latent_model_input)[:, 0]
|
782 |
+
# predict noise model_output
|
783 |
+
noise_pred = self.transformer(
|
784 |
+
latent_model_input,
|
785 |
+
attention_mask=attention_mask,
|
786 |
+
encoder_hidden_states=prompt_embeds,
|
787 |
+
encoder_attention_mask=prompt_attention_mask,
|
788 |
+
timestep=current_timestep,
|
789 |
+
added_cond_kwargs=added_cond_kwargs,
|
790 |
+
return_dict=False,
|
791 |
+
)[0]
|
792 |
+
|
793 |
+
# perform guidance
|
794 |
+
if do_classifier_free_guidance:
|
795 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
796 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
797 |
+
|
798 |
+
# learned sigma
|
799 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
800 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
801 |
+
else:
|
802 |
+
noise_pred = noise_pred
|
803 |
+
|
804 |
+
# compute previous image: x_t -> x_t-1
|
805 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
806 |
+
|
807 |
+
# call the callback, if provided
|
808 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
809 |
+
if callback is not None and i % callback_steps == 0:
|
810 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
811 |
+
callback(step_idx, t, latents)
|
812 |
+
|
813 |
+
if not output_type == "latents":
|
814 |
+
video = self.decode_latents(latents)
|
815 |
+
video = video[:, :num_frames, :height, :width]
|
816 |
+
else:
|
817 |
+
video = latents
|
818 |
+
return AllegroPipelineOutput(video=video)
|
819 |
+
|
820 |
+
# Offload all models
|
821 |
+
self.maybe_free_model_hooks()
|
822 |
+
|
823 |
+
if not return_dict:
|
824 |
+
return (video,)
|
825 |
+
|
826 |
+
return AllegroPipelineOutput(video=video)
|
827 |
+
|
828 |
+
def decode_latents(self, latents):
|
829 |
+
video = self.vae.decode(latents.to(self.vae.dtype) / self.vae.scale_factor).sample
|
830 |
+
# b t c h w -> b t h w c
|
831 |
+
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous()
|
832 |
+
return video
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "EulerAncestralDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.28.0",
|
4 |
+
"beta_end": 0.02,
|
5 |
+
"beta_schedule": "linear",
|
6 |
+
"beta_start": 0.0001,
|
7 |
+
"num_train_timesteps": 1000,
|
8 |
+
"prediction_type": "epsilon",
|
9 |
+
"rescale_betas_zero_snr": false,
|
10 |
+
"steps_offset": 0,
|
11 |
+
"timestep_spacing": "linspace",
|
12 |
+
"trained_betas": null
|
13 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"T5EncoderModel"
|
4 |
+
],
|
5 |
+
"d_ff": 10240,
|
6 |
+
"d_kv": 64,
|
7 |
+
"d_model": 4096,
|
8 |
+
"decoder_start_token_id": 0,
|
9 |
+
"dense_act_fn": "gelu_new",
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "gated-gelu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"is_gated_act": true,
|
16 |
+
"layer_norm_epsilon": 1e-06,
|
17 |
+
"model_type": "t5",
|
18 |
+
"num_decoder_layers": 24,
|
19 |
+
"num_heads": 64,
|
20 |
+
"num_layers": 24,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_max_distance": 128,
|
24 |
+
"relative_attention_num_buckets": 32,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.21.1",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32128
|
30 |
+
}
|
text_encoder/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f71ad0624095dae788b1023081dda1b4040bd24f7244a5b5b46eebc09825839
|
3 |
+
size 9452285635
|
text_encoder/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f68f80678299ac59f69b3550ebd47b966571920d8f9e71f42ab61fabaaed868
|
3 |
+
size 9597031749
|
text_encoder/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 19575627776
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin",
|
152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin",
|
215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"encoder.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"encoder.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"shared.weight": "pytorch_model-00001-of-00002.bin"
|
226 |
+
}
|
227 |
+
}
|
tokenizer/added_tokens.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<extra_id_0>": 32099,
|
3 |
+
"<extra_id_10>": 32089,
|
4 |
+
"<extra_id_11>": 32088,
|
5 |
+
"<extra_id_12>": 32087,
|
6 |
+
"<extra_id_13>": 32086,
|
7 |
+
"<extra_id_14>": 32085,
|
8 |
+
"<extra_id_15>": 32084,
|
9 |
+
"<extra_id_16>": 32083,
|
10 |
+
"<extra_id_17>": 32082,
|
11 |
+
"<extra_id_18>": 32081,
|
12 |
+
"<extra_id_19>": 32080,
|
13 |
+
"<extra_id_1>": 32098,
|
14 |
+
"<extra_id_20>": 32079,
|
15 |
+
"<extra_id_21>": 32078,
|
16 |
+
"<extra_id_22>": 32077,
|
17 |
+
"<extra_id_23>": 32076,
|
18 |
+
"<extra_id_24>": 32075,
|
19 |
+
"<extra_id_25>": 32074,
|
20 |
+
"<extra_id_26>": 32073,
|
21 |
+
"<extra_id_27>": 32072,
|
22 |
+
"<extra_id_28>": 32071,
|
23 |
+
"<extra_id_29>": 32070,
|
24 |
+
"<extra_id_2>": 32097,
|
25 |
+
"<extra_id_30>": 32069,
|
26 |
+
"<extra_id_31>": 32068,
|
27 |
+
"<extra_id_32>": 32067,
|
28 |
+
"<extra_id_33>": 32066,
|
29 |
+
"<extra_id_34>": 32065,
|
30 |
+
"<extra_id_35>": 32064,
|
31 |
+
"<extra_id_36>": 32063,
|
32 |
+
"<extra_id_37>": 32062,
|
33 |
+
"<extra_id_38>": 32061,
|
34 |
+
"<extra_id_39>": 32060,
|
35 |
+
"<extra_id_3>": 32096,
|
36 |
+
"<extra_id_40>": 32059,
|
37 |
+
"<extra_id_41>": 32058,
|
38 |
+
"<extra_id_42>": 32057,
|
39 |
+
"<extra_id_43>": 32056,
|
40 |
+
"<extra_id_44>": 32055,
|
41 |
+
"<extra_id_45>": 32054,
|
42 |
+
"<extra_id_46>": 32053,
|
43 |
+
"<extra_id_47>": 32052,
|
44 |
+
"<extra_id_48>": 32051,
|
45 |
+
"<extra_id_49>": 32050,
|
46 |
+
"<extra_id_4>": 32095,
|
47 |
+
"<extra_id_50>": 32049,
|
48 |
+
"<extra_id_51>": 32048,
|
49 |
+
"<extra_id_52>": 32047,
|
50 |
+
"<extra_id_53>": 32046,
|
51 |
+
"<extra_id_54>": 32045,
|
52 |
+
"<extra_id_55>": 32044,
|
53 |
+
"<extra_id_56>": 32043,
|
54 |
+
"<extra_id_57>": 32042,
|
55 |
+
"<extra_id_58>": 32041,
|
56 |
+
"<extra_id_59>": 32040,
|
57 |
+
"<extra_id_5>": 32094,
|
58 |
+
"<extra_id_60>": 32039,
|
59 |
+
"<extra_id_61>": 32038,
|
60 |
+
"<extra_id_62>": 32037,
|
61 |
+
"<extra_id_63>": 32036,
|
62 |
+
"<extra_id_64>": 32035,
|
63 |
+
"<extra_id_65>": 32034,
|
64 |
+
"<extra_id_66>": 32033,
|
65 |
+
"<extra_id_67>": 32032,
|
66 |
+
"<extra_id_68>": 32031,
|
67 |
+
"<extra_id_69>": 32030,
|
68 |
+
"<extra_id_6>": 32093,
|
69 |
+
"<extra_id_70>": 32029,
|
70 |
+
"<extra_id_71>": 32028,
|
71 |
+
"<extra_id_72>": 32027,
|
72 |
+
"<extra_id_73>": 32026,
|
73 |
+
"<extra_id_74>": 32025,
|
74 |
+
"<extra_id_75>": 32024,
|
75 |
+
"<extra_id_76>": 32023,
|
76 |
+
"<extra_id_77>": 32022,
|
77 |
+
"<extra_id_78>": 32021,
|
78 |
+
"<extra_id_79>": 32020,
|
79 |
+
"<extra_id_7>": 32092,
|
80 |
+
"<extra_id_80>": 32019,
|
81 |
+
"<extra_id_81>": 32018,
|
82 |
+
"<extra_id_82>": 32017,
|
83 |
+
"<extra_id_83>": 32016,
|
84 |
+
"<extra_id_84>": 32015,
|
85 |
+
"<extra_id_85>": 32014,
|
86 |
+
"<extra_id_86>": 32013,
|
87 |
+
"<extra_id_87>": 32012,
|
88 |
+
"<extra_id_88>": 32011,
|
89 |
+
"<extra_id_89>": 32010,
|
90 |
+
"<extra_id_8>": 32091,
|
91 |
+
"<extra_id_90>": 32009,
|
92 |
+
"<extra_id_91>": 32008,
|
93 |
+
"<extra_id_92>": 32007,
|
94 |
+
"<extra_id_93>": 32006,
|
95 |
+
"<extra_id_94>": 32005,
|
96 |
+
"<extra_id_95>": 32004,
|
97 |
+
"<extra_id_96>": 32003,
|
98 |
+
"<extra_id_97>": 32002,
|
99 |
+
"<extra_id_98>": 32001,
|
100 |
+
"<extra_id_99>": 32000,
|
101 |
+
"<extra_id_9>": 32090
|
102 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": {
|
105 |
+
"content": "</s>",
|
106 |
+
"lstrip": false,
|
107 |
+
"normalized": false,
|
108 |
+
"rstrip": false,
|
109 |
+
"single_word": false
|
110 |
+
},
|
111 |
+
"pad_token": {
|
112 |
+
"content": "<pad>",
|
113 |
+
"lstrip": false,
|
114 |
+
"normalized": false,
|
115 |
+
"rstrip": false,
|
116 |
+
"single_word": false
|
117 |
+
},
|
118 |
+
"unk_token": {
|
119 |
+
"content": "<unk>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false
|
124 |
+
}
|
125 |
+
}
|
tokenizer/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<unk>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"32000": {
|
29 |
+
"content": "<extra_id_99>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"32001": {
|
37 |
+
"content": "<extra_id_98>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"32002": {
|
45 |
+
"content": "<extra_id_97>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"32003": {
|
53 |
+
"content": "<extra_id_96>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"32004": {
|
61 |
+
"content": "<extra_id_95>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"32005": {
|
69 |
+
"content": "<extra_id_94>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"32006": {
|
77 |
+
"content": "<extra_id_93>",
|
78 |
+
"lstrip": true,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"32007": {
|
85 |
+
"content": "<extra_id_92>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"32008": {
|
93 |
+
"content": "<extra_id_91>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"32009": {
|
101 |
+
"content": "<extra_id_90>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"32010": {
|
109 |
+
"content": "<extra_id_89>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"32011": {
|
117 |
+
"content": "<extra_id_88>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"32012": {
|
125 |
+
"content": "<extra_id_87>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"32013": {
|
133 |
+
"content": "<extra_id_86>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"32014": {
|
141 |
+
"content": "<extra_id_85>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"32015": {
|
149 |
+
"content": "<extra_id_84>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"32016": {
|
157 |
+
"content": "<extra_id_83>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"32017": {
|
165 |
+
"content": "<extra_id_82>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"32018": {
|
173 |
+
"content": "<extra_id_81>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"32019": {
|
181 |
+
"content": "<extra_id_80>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"32020": {
|
189 |
+
"content": "<extra_id_79>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"32021": {
|
197 |
+
"content": "<extra_id_78>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"32022": {
|
205 |
+
"content": "<extra_id_77>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"32023": {
|
213 |
+
"content": "<extra_id_76>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"32024": {
|
221 |
+
"content": "<extra_id_75>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"32025": {
|
229 |
+
"content": "<extra_id_74>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"32026": {
|
237 |
+
"content": "<extra_id_73>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"32027": {
|
245 |
+
"content": "<extra_id_72>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"32028": {
|
253 |
+
"content": "<extra_id_71>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"32029": {
|
261 |
+
"content": "<extra_id_70>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"32030": {
|
269 |
+
"content": "<extra_id_69>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"32031": {
|
277 |
+
"content": "<extra_id_68>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"32032": {
|
285 |
+
"content": "<extra_id_67>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"32033": {
|
293 |
+
"content": "<extra_id_66>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"32034": {
|
301 |
+
"content": "<extra_id_65>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"32035": {
|
309 |
+
"content": "<extra_id_64>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"32036": {
|
317 |
+
"content": "<extra_id_63>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"32037": {
|
325 |
+
"content": "<extra_id_62>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"32038": {
|
333 |
+
"content": "<extra_id_61>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"32039": {
|
341 |
+
"content": "<extra_id_60>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"32040": {
|
349 |
+
"content": "<extra_id_59>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"32041": {
|
357 |
+
"content": "<extra_id_58>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"32042": {
|
365 |
+
"content": "<extra_id_57>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"32043": {
|
373 |
+
"content": "<extra_id_56>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"32044": {
|
381 |
+
"content": "<extra_id_55>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"32045": {
|
389 |
+
"content": "<extra_id_54>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"32046": {
|
397 |
+
"content": "<extra_id_53>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"32047": {
|
405 |
+
"content": "<extra_id_52>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"32048": {
|
413 |
+
"content": "<extra_id_51>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"32049": {
|
421 |
+
"content": "<extra_id_50>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"32050": {
|
429 |
+
"content": "<extra_id_49>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"32051": {
|
437 |
+
"content": "<extra_id_48>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"32052": {
|
445 |
+
"content": "<extra_id_47>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"32053": {
|
453 |
+
"content": "<extra_id_46>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"32054": {
|
461 |
+
"content": "<extra_id_45>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"32055": {
|
469 |
+
"content": "<extra_id_44>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"32056": {
|
477 |
+
"content": "<extra_id_43>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"32057": {
|
485 |
+
"content": "<extra_id_42>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"32058": {
|
493 |
+
"content": "<extra_id_41>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"32059": {
|
501 |
+
"content": "<extra_id_40>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"32060": {
|
509 |
+
"content": "<extra_id_39>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"32061": {
|
517 |
+
"content": "<extra_id_38>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"32062": {
|
525 |
+
"content": "<extra_id_37>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"32063": {
|
533 |
+
"content": "<extra_id_36>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"32064": {
|
541 |
+
"content": "<extra_id_35>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"32065": {
|
549 |
+
"content": "<extra_id_34>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"32066": {
|
557 |
+
"content": "<extra_id_33>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"32067": {
|
565 |
+
"content": "<extra_id_32>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"32068": {
|
573 |
+
"content": "<extra_id_31>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"32069": {
|
581 |
+
"content": "<extra_id_30>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"32070": {
|
589 |
+
"content": "<extra_id_29>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"32071": {
|
597 |
+
"content": "<extra_id_28>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"32072": {
|
605 |
+
"content": "<extra_id_27>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"32073": {
|
613 |
+
"content": "<extra_id_26>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"32074": {
|
621 |
+
"content": "<extra_id_25>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"32075": {
|
629 |
+
"content": "<extra_id_24>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"32076": {
|
637 |
+
"content": "<extra_id_23>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"32077": {
|
645 |
+
"content": "<extra_id_22>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"32078": {
|
653 |
+
"content": "<extra_id_21>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"32079": {
|
661 |
+
"content": "<extra_id_20>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"32080": {
|
669 |
+
"content": "<extra_id_19>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"32081": {
|
677 |
+
"content": "<extra_id_18>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"32082": {
|
685 |
+
"content": "<extra_id_17>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"32083": {
|
693 |
+
"content": "<extra_id_16>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"32084": {
|
701 |
+
"content": "<extra_id_15>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"32085": {
|
709 |
+
"content": "<extra_id_14>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"32086": {
|
717 |
+
"content": "<extra_id_13>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"32087": {
|
725 |
+
"content": "<extra_id_12>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"32088": {
|
733 |
+
"content": "<extra_id_11>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"32089": {
|
741 |
+
"content": "<extra_id_10>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"32090": {
|
749 |
+
"content": "<extra_id_9>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"32091": {
|
757 |
+
"content": "<extra_id_8>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"32092": {
|
765 |
+
"content": "<extra_id_7>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
},
|
772 |
+
"32093": {
|
773 |
+
"content": "<extra_id_6>",
|
774 |
+
"lstrip": true,
|
775 |
+
"normalized": false,
|
776 |
+
"rstrip": true,
|
777 |
+
"single_word": false,
|
778 |
+
"special": true
|
779 |
+
},
|
780 |
+
"32094": {
|
781 |
+
"content": "<extra_id_5>",
|
782 |
+
"lstrip": true,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": true,
|
785 |
+
"single_word": false,
|
786 |
+
"special": true
|
787 |
+
},
|
788 |
+
"32095": {
|
789 |
+
"content": "<extra_id_4>",
|
790 |
+
"lstrip": true,
|
791 |
+
"normalized": false,
|
792 |
+
"rstrip": true,
|
793 |
+
"single_word": false,
|
794 |
+
"special": true
|
795 |
+
},
|
796 |
+
"32096": {
|
797 |
+
"content": "<extra_id_3>",
|
798 |
+
"lstrip": true,
|
799 |
+
"normalized": false,
|
800 |
+
"rstrip": true,
|
801 |
+
"single_word": false,
|
802 |
+
"special": true
|
803 |
+
},
|
804 |
+
"32097": {
|
805 |
+
"content": "<extra_id_2>",
|
806 |
+
"lstrip": true,
|
807 |
+
"normalized": false,
|
808 |
+
"rstrip": true,
|
809 |
+
"single_word": false,
|
810 |
+
"special": true
|
811 |
+
},
|
812 |
+
"32098": {
|
813 |
+
"content": "<extra_id_1>",
|
814 |
+
"lstrip": true,
|
815 |
+
"normalized": false,
|
816 |
+
"rstrip": true,
|
817 |
+
"single_word": false,
|
818 |
+
"special": true
|
819 |
+
},
|
820 |
+
"32099": {
|
821 |
+
"content": "<extra_id_0>",
|
822 |
+
"lstrip": true,
|
823 |
+
"normalized": false,
|
824 |
+
"rstrip": true,
|
825 |
+
"single_word": false,
|
826 |
+
"special": true
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"additional_special_tokens": [
|
830 |
+
"<extra_id_0>",
|
831 |
+
"<extra_id_1>",
|
832 |
+
"<extra_id_2>",
|
833 |
+
"<extra_id_3>",
|
834 |
+
"<extra_id_4>",
|
835 |
+
"<extra_id_5>",
|
836 |
+
"<extra_id_6>",
|
837 |
+
"<extra_id_7>",
|
838 |
+
"<extra_id_8>",
|
839 |
+
"<extra_id_9>",
|
840 |
+
"<extra_id_10>",
|
841 |
+
"<extra_id_11>",
|
842 |
+
"<extra_id_12>",
|
843 |
+
"<extra_id_13>",
|
844 |
+
"<extra_id_14>",
|
845 |
+
"<extra_id_15>",
|
846 |
+
"<extra_id_16>",
|
847 |
+
"<extra_id_17>",
|
848 |
+
"<extra_id_18>",
|
849 |
+
"<extra_id_19>",
|
850 |
+
"<extra_id_20>",
|
851 |
+
"<extra_id_21>",
|
852 |
+
"<extra_id_22>",
|
853 |
+
"<extra_id_23>",
|
854 |
+
"<extra_id_24>",
|
855 |
+
"<extra_id_25>",
|
856 |
+
"<extra_id_26>",
|
857 |
+
"<extra_id_27>",
|
858 |
+
"<extra_id_28>",
|
859 |
+
"<extra_id_29>",
|
860 |
+
"<extra_id_30>",
|
861 |
+
"<extra_id_31>",
|
862 |
+
"<extra_id_32>",
|
863 |
+
"<extra_id_33>",
|
864 |
+
"<extra_id_34>",
|
865 |
+
"<extra_id_35>",
|
866 |
+
"<extra_id_36>",
|
867 |
+
"<extra_id_37>",
|
868 |
+
"<extra_id_38>",
|
869 |
+
"<extra_id_39>",
|
870 |
+
"<extra_id_40>",
|
871 |
+
"<extra_id_41>",
|
872 |
+
"<extra_id_42>",
|
873 |
+
"<extra_id_43>",
|
874 |
+
"<extra_id_44>",
|
875 |
+
"<extra_id_45>",
|
876 |
+
"<extra_id_46>",
|
877 |
+
"<extra_id_47>",
|
878 |
+
"<extra_id_48>",
|
879 |
+
"<extra_id_49>",
|
880 |
+
"<extra_id_50>",
|
881 |
+
"<extra_id_51>",
|
882 |
+
"<extra_id_52>",
|
883 |
+
"<extra_id_53>",
|
884 |
+
"<extra_id_54>",
|
885 |
+
"<extra_id_55>",
|
886 |
+
"<extra_id_56>",
|
887 |
+
"<extra_id_57>",
|
888 |
+
"<extra_id_58>",
|
889 |
+
"<extra_id_59>",
|
890 |
+
"<extra_id_60>",
|
891 |
+
"<extra_id_61>",
|
892 |
+
"<extra_id_62>",
|
893 |
+
"<extra_id_63>",
|
894 |
+
"<extra_id_64>",
|
895 |
+
"<extra_id_65>",
|
896 |
+
"<extra_id_66>",
|
897 |
+
"<extra_id_67>",
|
898 |
+
"<extra_id_68>",
|
899 |
+
"<extra_id_69>",
|
900 |
+
"<extra_id_70>",
|
901 |
+
"<extra_id_71>",
|
902 |
+
"<extra_id_72>",
|
903 |
+
"<extra_id_73>",
|
904 |
+
"<extra_id_74>",
|
905 |
+
"<extra_id_75>",
|
906 |
+
"<extra_id_76>",
|
907 |
+
"<extra_id_77>",
|
908 |
+
"<extra_id_78>",
|
909 |
+
"<extra_id_79>",
|
910 |
+
"<extra_id_80>",
|
911 |
+
"<extra_id_81>",
|
912 |
+
"<extra_id_82>",
|
913 |
+
"<extra_id_83>",
|
914 |
+
"<extra_id_84>",
|
915 |
+
"<extra_id_85>",
|
916 |
+
"<extra_id_86>",
|
917 |
+
"<extra_id_87>",
|
918 |
+
"<extra_id_88>",
|
919 |
+
"<extra_id_89>",
|
920 |
+
"<extra_id_90>",
|
921 |
+
"<extra_id_91>",
|
922 |
+
"<extra_id_92>",
|
923 |
+
"<extra_id_93>",
|
924 |
+
"<extra_id_94>",
|
925 |
+
"<extra_id_95>",
|
926 |
+
"<extra_id_96>",
|
927 |
+
"<extra_id_97>",
|
928 |
+
"<extra_id_98>",
|
929 |
+
"<extra_id_99>"
|
930 |
+
],
|
931 |
+
"clean_up_tokenization_spaces": true,
|
932 |
+
"eos_token": "</s>",
|
933 |
+
"extra_ids": 100,
|
934 |
+
"legacy": true,
|
935 |
+
"model_max_length": 512,
|
936 |
+
"pad_token": "<pad>",
|
937 |
+
"sp_model_kwargs": {},
|
938 |
+
"tokenizer_class": "T5Tokenizer",
|
939 |
+
"unk_token": "<unk>"
|
940 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AllegroTransformer3DModel",
|
3 |
+
"_diffusers_version": "0.28.0",
|
4 |
+
"_name_or_path": "/cpfs/data/user/yanghuan/expr/rsora/RSoraT2V_L32AH24AD96_122_20240918_88x720x1280_fps15_t5/checkpoint-38000/model",
|
5 |
+
"activation_fn": "gelu-approximate",
|
6 |
+
"attention_bias": true,
|
7 |
+
"attention_head_dim": 96,
|
8 |
+
"ca_attention_mode": "xformers",
|
9 |
+
"caption_channels": 4096,
|
10 |
+
"cross_attention_dim": 2304,
|
11 |
+
"double_self_attention": false,
|
12 |
+
"downsampler": null,
|
13 |
+
"dropout": 0.0,
|
14 |
+
"in_channels": 4,
|
15 |
+
"interpolation_scale_h": 2.0,
|
16 |
+
"interpolation_scale_t": 2.2,
|
17 |
+
"interpolation_scale_w": 2.0,
|
18 |
+
"model_max_length": 300,
|
19 |
+
"norm_elementwise_affine": false,
|
20 |
+
"norm_eps": 1e-06,
|
21 |
+
"norm_type": "ada_norm_single",
|
22 |
+
"num_attention_heads": 24,
|
23 |
+
"num_embeds_ada_norm": 1000,
|
24 |
+
"num_layers": 32,
|
25 |
+
"only_cross_attention": false,
|
26 |
+
"out_channels": 4,
|
27 |
+
"patch_size": 2,
|
28 |
+
"patch_size_t": 1,
|
29 |
+
"sa_attention_mode": "flash",
|
30 |
+
"sample_size": [
|
31 |
+
90,
|
32 |
+
160
|
33 |
+
],
|
34 |
+
"sample_size_t": 22,
|
35 |
+
"upcast_attention": false,
|
36 |
+
"use_additional_conditions": null,
|
37 |
+
"use_linear_projection": false,
|
38 |
+
"use_rope": true
|
39 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6927dcc812841c1da549bf11c97ddf30532aee0e708a6642fa64cf8e0dfcdef7
|
3 |
+
size 5543894392
|
transformer/transformer_3d_allegro.py
ADDED
@@ -0,0 +1,1776 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from functools import partial
|
15 |
+
from importlib import import_module
|
16 |
+
from typing import Any, Callable, Dict, Optional, Tuple
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import collections
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
AttnAddedKVProcessor,
|
27 |
+
AttnAddedKVProcessor2_0,
|
28 |
+
AttnProcessor,
|
29 |
+
CustomDiffusionAttnProcessor,
|
30 |
+
CustomDiffusionAttnProcessor2_0,
|
31 |
+
CustomDiffusionXFormersAttnProcessor,
|
32 |
+
LoRAAttnAddedKVProcessor,
|
33 |
+
LoRAAttnProcessor,
|
34 |
+
LoRAAttnProcessor2_0,
|
35 |
+
LoRAXFormersAttnProcessor,
|
36 |
+
SlicedAttnAddedKVProcessor,
|
37 |
+
SlicedAttnProcessor,
|
38 |
+
SpatialNorm,
|
39 |
+
XFormersAttnAddedKVProcessor,
|
40 |
+
XFormersAttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
45 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_xformers_available
|
46 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
47 |
+
from einops import rearrange, repeat
|
48 |
+
from torch import nn
|
49 |
+
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
50 |
+
|
51 |
+
|
52 |
+
if is_xformers_available():
|
53 |
+
import xformers
|
54 |
+
import xformers.ops
|
55 |
+
else:
|
56 |
+
xformers = None
|
57 |
+
|
58 |
+
from diffusers.utils import logging
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
def to_2tuple(x):
|
64 |
+
if isinstance(x, collections.abc.Iterable):
|
65 |
+
return x
|
66 |
+
return (x, x)
|
67 |
+
|
68 |
+
class CombinedTimestepSizeEmbeddings(nn.Module):
|
69 |
+
"""
|
70 |
+
For PixArt-Alpha.
|
71 |
+
|
72 |
+
Reference:
|
73 |
+
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
self.outdim = size_emb_dim
|
80 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
81 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
82 |
+
|
83 |
+
self.use_additional_conditions = use_additional_conditions
|
84 |
+
if use_additional_conditions:
|
85 |
+
self.use_additional_conditions = True
|
86 |
+
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
87 |
+
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
88 |
+
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
89 |
+
|
90 |
+
def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module):
|
91 |
+
if size.ndim == 1:
|
92 |
+
size = size[:, None]
|
93 |
+
|
94 |
+
if size.shape[0] != batch_size:
|
95 |
+
size = size.repeat(batch_size // size.shape[0], 1)
|
96 |
+
if size.shape[0] != batch_size:
|
97 |
+
raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.")
|
98 |
+
|
99 |
+
current_batch_size, dims = size.shape[0], size.shape[1]
|
100 |
+
size = size.reshape(-1)
|
101 |
+
size_freq = self.additional_condition_proj(size).to(size.dtype)
|
102 |
+
|
103 |
+
size_emb = embedder(size_freq)
|
104 |
+
size_emb = size_emb.reshape(current_batch_size, dims * self.outdim)
|
105 |
+
return size_emb
|
106 |
+
|
107 |
+
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
|
108 |
+
timesteps_proj = self.time_proj(timestep)
|
109 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
110 |
+
|
111 |
+
if self.use_additional_conditions:
|
112 |
+
resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder)
|
113 |
+
aspect_ratio = self.apply_condition(
|
114 |
+
aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder
|
115 |
+
)
|
116 |
+
conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1)
|
117 |
+
else:
|
118 |
+
conditioning = timesteps_emb
|
119 |
+
|
120 |
+
return conditioning
|
121 |
+
|
122 |
+
|
123 |
+
class PositionGetter3D(object):
|
124 |
+
""" return positions of patches """
|
125 |
+
|
126 |
+
def __init__(self, ):
|
127 |
+
self.cache_positions = {}
|
128 |
+
|
129 |
+
def __call__(self, b, t, h, w, device):
|
130 |
+
if not (b, t,h,w) in self.cache_positions:
|
131 |
+
x = torch.arange(w, device=device)
|
132 |
+
y = torch.arange(h, device=device)
|
133 |
+
z = torch.arange(t, device=device)
|
134 |
+
pos = torch.cartesian_prod(z, y, x)
|
135 |
+
|
136 |
+
pos = pos.reshape(t * h * w, 3).transpose(0, 1).reshape(3, 1, -1).contiguous().expand(3, b, -1).clone()
|
137 |
+
poses = (pos[0].contiguous(), pos[1].contiguous(), pos[2].contiguous())
|
138 |
+
max_poses = (int(poses[0].max()), int(poses[1].max()), int(poses[2].max()))
|
139 |
+
|
140 |
+
self.cache_positions[b, t, h, w] = (poses, max_poses)
|
141 |
+
pos = self.cache_positions[b, t, h, w]
|
142 |
+
|
143 |
+
return pos
|
144 |
+
|
145 |
+
|
146 |
+
class RoPE3D(torch.nn.Module):
|
147 |
+
|
148 |
+
def __init__(self, freq=10000.0, F0=1.0, interpolation_scale_thw=(1, 1, 1)):
|
149 |
+
super().__init__()
|
150 |
+
self.base = freq
|
151 |
+
self.F0 = F0
|
152 |
+
self.interpolation_scale_t = interpolation_scale_thw[0]
|
153 |
+
self.interpolation_scale_h = interpolation_scale_thw[1]
|
154 |
+
self.interpolation_scale_w = interpolation_scale_thw[2]
|
155 |
+
self.cache = {}
|
156 |
+
|
157 |
+
def get_cos_sin(self, D, seq_len, device, dtype, interpolation_scale=1):
|
158 |
+
if (D, seq_len, device, dtype) not in self.cache:
|
159 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
|
160 |
+
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) / interpolation_scale
|
161 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
|
162 |
+
freqs = torch.cat((freqs, freqs), dim=-1)
|
163 |
+
cos = freqs.cos() # (Seq, Dim)
|
164 |
+
sin = freqs.sin()
|
165 |
+
self.cache[D, seq_len, device, dtype] = (cos, sin)
|
166 |
+
return self.cache[D, seq_len, device, dtype]
|
167 |
+
|
168 |
+
@staticmethod
|
169 |
+
def rotate_half(x):
|
170 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
171 |
+
return torch.cat((-x2, x1), dim=-1)
|
172 |
+
|
173 |
+
def apply_rope1d(self, tokens, pos1d, cos, sin):
|
174 |
+
assert pos1d.ndim == 2
|
175 |
+
|
176 |
+
# for (batch_size x ntokens x nheads x dim)
|
177 |
+
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :]
|
178 |
+
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :]
|
179 |
+
return (tokens * cos) + (self.rotate_half(tokens) * sin)
|
180 |
+
|
181 |
+
def forward(self, tokens, positions):
|
182 |
+
"""
|
183 |
+
input:
|
184 |
+
* tokens: batch_size x nheads x ntokens x dim
|
185 |
+
* positions: batch_size x ntokens x 3 (t, y and x position of each token)
|
186 |
+
output:
|
187 |
+
* tokens after appplying RoPE3D (batch_size x nheads x ntokens x x dim)
|
188 |
+
"""
|
189 |
+
assert tokens.size(3) % 3 == 0, "number of dimensions should be a multiple of three"
|
190 |
+
D = tokens.size(3) // 3
|
191 |
+
poses, max_poses = positions
|
192 |
+
assert len(poses) == 3 and poses[0].ndim == 2# Batch, Seq, 3
|
193 |
+
cos_t, sin_t = self.get_cos_sin(D, max_poses[0] + 1, tokens.device, tokens.dtype, self.interpolation_scale_t)
|
194 |
+
cos_y, sin_y = self.get_cos_sin(D, max_poses[1] + 1, tokens.device, tokens.dtype, self.interpolation_scale_h)
|
195 |
+
cos_x, sin_x = self.get_cos_sin(D, max_poses[2] + 1, tokens.device, tokens.dtype, self.interpolation_scale_w)
|
196 |
+
# split features into three along the feature dimension, and apply rope1d on each half
|
197 |
+
t, y, x = tokens.chunk(3, dim=-1)
|
198 |
+
t = self.apply_rope1d(t, poses[0], cos_t, sin_t)
|
199 |
+
y = self.apply_rope1d(y, poses[1], cos_y, sin_y)
|
200 |
+
x = self.apply_rope1d(x, poses[2], cos_x, sin_x)
|
201 |
+
tokens = torch.cat((t, y, x), dim=-1)
|
202 |
+
return tokens
|
203 |
+
|
204 |
+
class PatchEmbed2D(nn.Module):
|
205 |
+
"""2D Image to Patch Embedding"""
|
206 |
+
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
num_frames=1,
|
210 |
+
height=224,
|
211 |
+
width=224,
|
212 |
+
patch_size_t=1,
|
213 |
+
patch_size=16,
|
214 |
+
in_channels=3,
|
215 |
+
embed_dim=768,
|
216 |
+
layer_norm=False,
|
217 |
+
flatten=True,
|
218 |
+
bias=True,
|
219 |
+
interpolation_scale=(1, 1),
|
220 |
+
interpolation_scale_t=1,
|
221 |
+
use_abs_pos=False,
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
self.use_abs_pos = use_abs_pos
|
225 |
+
self.flatten = flatten
|
226 |
+
self.layer_norm = layer_norm
|
227 |
+
|
228 |
+
self.proj = nn.Conv2d(
|
229 |
+
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), bias=bias
|
230 |
+
)
|
231 |
+
if layer_norm:
|
232 |
+
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
|
233 |
+
else:
|
234 |
+
self.norm = None
|
235 |
+
|
236 |
+
self.patch_size_t = patch_size_t
|
237 |
+
self.patch_size = patch_size
|
238 |
+
|
239 |
+
def forward(self, latent):
|
240 |
+
b, _, _, _, _ = latent.shape
|
241 |
+
video_latent = None
|
242 |
+
|
243 |
+
latent = rearrange(latent, 'b c t h w -> (b t) c h w')
|
244 |
+
|
245 |
+
latent = self.proj(latent)
|
246 |
+
if self.flatten:
|
247 |
+
latent = latent.flatten(2).transpose(1, 2) # BT C H W -> BT N C
|
248 |
+
if self.layer_norm:
|
249 |
+
latent = self.norm(latent)
|
250 |
+
|
251 |
+
latent = rearrange(latent, '(b t) n c -> b (t n) c', b=b)
|
252 |
+
video_latent = latent
|
253 |
+
|
254 |
+
return video_latent
|
255 |
+
|
256 |
+
|
257 |
+
@maybe_allow_in_graph
|
258 |
+
class Attention(nn.Module):
|
259 |
+
r"""
|
260 |
+
A cross attention layer.
|
261 |
+
|
262 |
+
Parameters:
|
263 |
+
query_dim (`int`):
|
264 |
+
The number of channels in the query.
|
265 |
+
cross_attention_dim (`int`, *optional*):
|
266 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
267 |
+
heads (`int`, *optional*, defaults to 8):
|
268 |
+
The number of heads to use for multi-head attention.
|
269 |
+
dim_head (`int`, *optional*, defaults to 64):
|
270 |
+
The number of channels in each head.
|
271 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
272 |
+
The dropout probability to use.
|
273 |
+
bias (`bool`, *optional*, defaults to False):
|
274 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
275 |
+
upcast_attention (`bool`, *optional*, defaults to False):
|
276 |
+
Set to `True` to upcast the attention computation to `float32`.
|
277 |
+
upcast_softmax (`bool`, *optional*, defaults to False):
|
278 |
+
Set to `True` to upcast the softmax computation to `float32`.
|
279 |
+
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
280 |
+
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
281 |
+
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
|
282 |
+
The number of groups to use for the group norm in the cross attention.
|
283 |
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
284 |
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
285 |
+
norm_num_groups (`int`, *optional*, defaults to `None`):
|
286 |
+
The number of groups to use for the group norm in the attention.
|
287 |
+
spatial_norm_dim (`int`, *optional*, defaults to `None`):
|
288 |
+
The number of channels to use for the spatial normalization.
|
289 |
+
out_bias (`bool`, *optional*, defaults to `True`):
|
290 |
+
Set to `True` to use a bias in the output linear layer.
|
291 |
+
scale_qk (`bool`, *optional*, defaults to `True`):
|
292 |
+
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
|
293 |
+
only_cross_attention (`bool`, *optional*, defaults to `False`):
|
294 |
+
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
|
295 |
+
`added_kv_proj_dim` is not `None`.
|
296 |
+
eps (`float`, *optional*, defaults to 1e-5):
|
297 |
+
An additional value added to the denominator in group normalization that is used for numerical stability.
|
298 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0):
|
299 |
+
A factor to rescale the output by dividing it with this value.
|
300 |
+
residual_connection (`bool`, *optional*, defaults to `False`):
|
301 |
+
Set to `True` to add the residual connection to the output.
|
302 |
+
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
|
303 |
+
Set to `True` if the attention block is loaded from a deprecated state dict.
|
304 |
+
processor (`AttnProcessor`, *optional*, defaults to `None`):
|
305 |
+
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
|
306 |
+
`AttnProcessor` otherwise.
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
query_dim: int,
|
312 |
+
cross_attention_dim: Optional[int] = None,
|
313 |
+
heads: int = 8,
|
314 |
+
dim_head: int = 64,
|
315 |
+
dropout: float = 0.0,
|
316 |
+
bias: bool = False,
|
317 |
+
upcast_attention: bool = False,
|
318 |
+
upcast_softmax: bool = False,
|
319 |
+
cross_attention_norm: Optional[str] = None,
|
320 |
+
cross_attention_norm_num_groups: int = 32,
|
321 |
+
added_kv_proj_dim: Optional[int] = None,
|
322 |
+
norm_num_groups: Optional[int] = None,
|
323 |
+
spatial_norm_dim: Optional[int] = None,
|
324 |
+
out_bias: bool = True,
|
325 |
+
scale_qk: bool = True,
|
326 |
+
only_cross_attention: bool = False,
|
327 |
+
eps: float = 1e-5,
|
328 |
+
rescale_output_factor: float = 1.0,
|
329 |
+
residual_connection: bool = False,
|
330 |
+
_from_deprecated_attn_block: bool = False,
|
331 |
+
processor: Optional["AttnProcessor"] = None,
|
332 |
+
attention_mode: str = "xformers",
|
333 |
+
use_rope: bool = False,
|
334 |
+
interpolation_scale_thw=None,
|
335 |
+
):
|
336 |
+
super().__init__()
|
337 |
+
self.inner_dim = dim_head * heads
|
338 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
339 |
+
self.upcast_attention = upcast_attention
|
340 |
+
self.upcast_softmax = upcast_softmax
|
341 |
+
self.rescale_output_factor = rescale_output_factor
|
342 |
+
self.residual_connection = residual_connection
|
343 |
+
self.dropout = dropout
|
344 |
+
self.use_rope = use_rope
|
345 |
+
|
346 |
+
# we make use of this private variable to know whether this class is loaded
|
347 |
+
# with an deprecated state dict so that we can convert it on the fly
|
348 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
349 |
+
|
350 |
+
self.scale_qk = scale_qk
|
351 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
352 |
+
|
353 |
+
self.heads = heads
|
354 |
+
# for slice_size > 0 the attention score computation
|
355 |
+
# is split across the batch axis to save memory
|
356 |
+
# You can set slice_size with `set_attention_slice`
|
357 |
+
self.sliceable_head_dim = heads
|
358 |
+
|
359 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
360 |
+
self.only_cross_attention = only_cross_attention
|
361 |
+
|
362 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
363 |
+
raise ValueError(
|
364 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
365 |
+
)
|
366 |
+
|
367 |
+
if norm_num_groups is not None:
|
368 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
369 |
+
else:
|
370 |
+
self.group_norm = None
|
371 |
+
|
372 |
+
if spatial_norm_dim is not None:
|
373 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
374 |
+
else:
|
375 |
+
self.spatial_norm = None
|
376 |
+
|
377 |
+
if cross_attention_norm is None:
|
378 |
+
self.norm_cross = None
|
379 |
+
elif cross_attention_norm == "layer_norm":
|
380 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
381 |
+
elif cross_attention_norm == "group_norm":
|
382 |
+
if self.added_kv_proj_dim is not None:
|
383 |
+
# The given `encoder_hidden_states` are initially of shape
|
384 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
385 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
386 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
387 |
+
# the number of channels for the group norm.
|
388 |
+
norm_cross_num_channels = added_kv_proj_dim
|
389 |
+
else:
|
390 |
+
norm_cross_num_channels = self.cross_attention_dim
|
391 |
+
|
392 |
+
self.norm_cross = nn.GroupNorm(
|
393 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
raise ValueError(
|
397 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
398 |
+
)
|
399 |
+
|
400 |
+
linear_cls = nn.Linear
|
401 |
+
|
402 |
+
|
403 |
+
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
|
404 |
+
|
405 |
+
if not self.only_cross_attention:
|
406 |
+
# only relevant for the `AddedKVProcessor` classes
|
407 |
+
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
408 |
+
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
409 |
+
else:
|
410 |
+
self.to_k = None
|
411 |
+
self.to_v = None
|
412 |
+
|
413 |
+
if self.added_kv_proj_dim is not None:
|
414 |
+
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
415 |
+
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
416 |
+
|
417 |
+
self.to_out = nn.ModuleList([])
|
418 |
+
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias))
|
419 |
+
self.to_out.append(nn.Dropout(dropout))
|
420 |
+
|
421 |
+
# set attention processor
|
422 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
423 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
424 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
425 |
+
if processor is None:
|
426 |
+
processor = (
|
427 |
+
AttnProcessor2_0(
|
428 |
+
attention_mode,
|
429 |
+
use_rope,
|
430 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
431 |
+
)
|
432 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
433 |
+
else AttnProcessor()
|
434 |
+
)
|
435 |
+
self.set_processor(processor)
|
436 |
+
|
437 |
+
def set_use_memory_efficient_attention_xformers(
|
438 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
439 |
+
) -> None:
|
440 |
+
r"""
|
441 |
+
Set whether to use memory efficient attention from `xformers` or not.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
use_memory_efficient_attention_xformers (`bool`):
|
445 |
+
Whether to use memory efficient attention from `xformers` or not.
|
446 |
+
attention_op (`Callable`, *optional*):
|
447 |
+
The attention operation to use. Defaults to `None` which uses the default attention operation from
|
448 |
+
`xformers`.
|
449 |
+
"""
|
450 |
+
is_lora = hasattr(self, "processor")
|
451 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
452 |
+
self.processor,
|
453 |
+
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
|
454 |
+
)
|
455 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
456 |
+
self.processor,
|
457 |
+
(
|
458 |
+
AttnAddedKVProcessor,
|
459 |
+
AttnAddedKVProcessor2_0,
|
460 |
+
SlicedAttnAddedKVProcessor,
|
461 |
+
XFormersAttnAddedKVProcessor,
|
462 |
+
LoRAAttnAddedKVProcessor,
|
463 |
+
),
|
464 |
+
)
|
465 |
+
|
466 |
+
if use_memory_efficient_attention_xformers:
|
467 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
468 |
+
raise NotImplementedError(
|
469 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
|
470 |
+
)
|
471 |
+
if not is_xformers_available():
|
472 |
+
raise ModuleNotFoundError(
|
473 |
+
(
|
474 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
475 |
+
" xformers"
|
476 |
+
),
|
477 |
+
name="xformers",
|
478 |
+
)
|
479 |
+
elif not torch.cuda.is_available():
|
480 |
+
raise ValueError(
|
481 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
482 |
+
" only available for GPU "
|
483 |
+
)
|
484 |
+
else:
|
485 |
+
try:
|
486 |
+
# Make sure we can run the memory efficient attention
|
487 |
+
_ = xformers.ops.memory_efficient_attention(
|
488 |
+
torch.randn((1, 2, 40), device="cuda"),
|
489 |
+
torch.randn((1, 2, 40), device="cuda"),
|
490 |
+
torch.randn((1, 2, 40), device="cuda"),
|
491 |
+
)
|
492 |
+
except Exception as e:
|
493 |
+
raise e
|
494 |
+
|
495 |
+
if is_lora:
|
496 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
497 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
498 |
+
processor = LoRAXFormersAttnProcessor(
|
499 |
+
hidden_size=self.processor.hidden_size,
|
500 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
501 |
+
rank=self.processor.rank,
|
502 |
+
attention_op=attention_op,
|
503 |
+
)
|
504 |
+
processor.load_state_dict(self.processor.state_dict())
|
505 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
506 |
+
elif is_custom_diffusion:
|
507 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
508 |
+
train_kv=self.processor.train_kv,
|
509 |
+
train_q_out=self.processor.train_q_out,
|
510 |
+
hidden_size=self.processor.hidden_size,
|
511 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
512 |
+
attention_op=attention_op,
|
513 |
+
)
|
514 |
+
processor.load_state_dict(self.processor.state_dict())
|
515 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
516 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
517 |
+
elif is_added_kv_processor:
|
518 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
519 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
520 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
521 |
+
# throw warning
|
522 |
+
logger.info(
|
523 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
524 |
+
)
|
525 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
526 |
+
else:
|
527 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
528 |
+
else:
|
529 |
+
if is_lora:
|
530 |
+
attn_processor_class = (
|
531 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
532 |
+
)
|
533 |
+
processor = attn_processor_class(
|
534 |
+
hidden_size=self.processor.hidden_size,
|
535 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
536 |
+
rank=self.processor.rank,
|
537 |
+
)
|
538 |
+
processor.load_state_dict(self.processor.state_dict())
|
539 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
540 |
+
elif is_custom_diffusion:
|
541 |
+
attn_processor_class = (
|
542 |
+
CustomDiffusionAttnProcessor2_0
|
543 |
+
if hasattr(F, "scaled_dot_product_attention")
|
544 |
+
else CustomDiffusionAttnProcessor
|
545 |
+
)
|
546 |
+
processor = attn_processor_class(
|
547 |
+
train_kv=self.processor.train_kv,
|
548 |
+
train_q_out=self.processor.train_q_out,
|
549 |
+
hidden_size=self.processor.hidden_size,
|
550 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
551 |
+
)
|
552 |
+
processor.load_state_dict(self.processor.state_dict())
|
553 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
554 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
555 |
+
else:
|
556 |
+
# set attention processor
|
557 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
558 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
559 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
560 |
+
processor = (
|
561 |
+
AttnProcessor2_0()
|
562 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
563 |
+
else AttnProcessor()
|
564 |
+
)
|
565 |
+
|
566 |
+
self.set_processor(processor)
|
567 |
+
|
568 |
+
def set_attention_slice(self, slice_size: int) -> None:
|
569 |
+
r"""
|
570 |
+
Set the slice size for attention computation.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
slice_size (`int`):
|
574 |
+
The slice size for attention computation.
|
575 |
+
"""
|
576 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
577 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
578 |
+
|
579 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
580 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
581 |
+
elif slice_size is not None:
|
582 |
+
processor = SlicedAttnProcessor(slice_size)
|
583 |
+
elif self.added_kv_proj_dim is not None:
|
584 |
+
processor = AttnAddedKVProcessor()
|
585 |
+
else:
|
586 |
+
# set attention processor
|
587 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
588 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
589 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
590 |
+
processor = (
|
591 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
592 |
+
)
|
593 |
+
|
594 |
+
self.set_processor(processor)
|
595 |
+
|
596 |
+
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None:
|
597 |
+
r"""
|
598 |
+
Set the attention processor to use.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
processor (`AttnProcessor`):
|
602 |
+
The attention processor to use.
|
603 |
+
_remove_lora (`bool`, *optional*, defaults to `False`):
|
604 |
+
Set to `True` to remove LoRA layers from the model.
|
605 |
+
"""
|
606 |
+
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
|
607 |
+
deprecate(
|
608 |
+
"set_processor to offload LoRA",
|
609 |
+
"0.26.0",
|
610 |
+
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
611 |
+
)
|
612 |
+
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
613 |
+
# We need to remove all LoRA layers
|
614 |
+
# Don't forget to remove ALL `_remove_lora` from the codebase
|
615 |
+
for module in self.modules():
|
616 |
+
if hasattr(module, "set_lora_layer"):
|
617 |
+
module.set_lora_layer(None)
|
618 |
+
|
619 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
620 |
+
# pop `processor` from `self._modules`
|
621 |
+
if (
|
622 |
+
hasattr(self, "processor")
|
623 |
+
and isinstance(self.processor, torch.nn.Module)
|
624 |
+
and not isinstance(processor, torch.nn.Module)
|
625 |
+
):
|
626 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
627 |
+
self._modules.pop("processor")
|
628 |
+
|
629 |
+
self.processor = processor
|
630 |
+
|
631 |
+
def get_processor(self, return_deprecated_lora: bool = False):
|
632 |
+
r"""
|
633 |
+
Get the attention processor in use.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
|
637 |
+
Set to `True` to return the deprecated LoRA attention processor.
|
638 |
+
|
639 |
+
Returns:
|
640 |
+
"AttentionProcessor": The attention processor in use.
|
641 |
+
"""
|
642 |
+
if not return_deprecated_lora:
|
643 |
+
return self.processor
|
644 |
+
|
645 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
646 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
647 |
+
# with PEFT is completed.
|
648 |
+
is_lora_activated = {
|
649 |
+
name: module.lora_layer is not None
|
650 |
+
for name, module in self.named_modules()
|
651 |
+
if hasattr(module, "lora_layer")
|
652 |
+
}
|
653 |
+
|
654 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
655 |
+
if not any(is_lora_activated.values()):
|
656 |
+
return self.processor
|
657 |
+
|
658 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
659 |
+
is_lora_activated.pop("add_k_proj", None)
|
660 |
+
is_lora_activated.pop("add_v_proj", None)
|
661 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
662 |
+
if not all(is_lora_activated.values()):
|
663 |
+
raise ValueError(
|
664 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
665 |
+
)
|
666 |
+
|
667 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
668 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
669 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
670 |
+
|
671 |
+
hidden_size = self.inner_dim
|
672 |
+
|
673 |
+
# now create a LoRA attention processor from the LoRA layers
|
674 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
675 |
+
kwargs = {
|
676 |
+
"cross_attention_dim": self.cross_attention_dim,
|
677 |
+
"rank": self.to_q.lora_layer.rank,
|
678 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
679 |
+
"q_rank": self.to_q.lora_layer.rank,
|
680 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
681 |
+
"k_rank": self.to_k.lora_layer.rank,
|
682 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
683 |
+
"v_rank": self.to_v.lora_layer.rank,
|
684 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
685 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
686 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
687 |
+
}
|
688 |
+
|
689 |
+
if hasattr(self.processor, "attention_op"):
|
690 |
+
kwargs["attention_op"] = self.processor.attention_op
|
691 |
+
|
692 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
693 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
694 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
695 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
696 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
697 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
698 |
+
lora_processor = lora_processor_cls(
|
699 |
+
hidden_size,
|
700 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
701 |
+
rank=self.to_q.lora_layer.rank,
|
702 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
703 |
+
)
|
704 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
705 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
706 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
707 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
708 |
+
|
709 |
+
# only save if used
|
710 |
+
if self.add_k_proj.lora_layer is not None:
|
711 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
712 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
713 |
+
else:
|
714 |
+
lora_processor.add_k_proj_lora = None
|
715 |
+
lora_processor.add_v_proj_lora = None
|
716 |
+
else:
|
717 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
718 |
+
|
719 |
+
return lora_processor
|
720 |
+
|
721 |
+
def forward(
|
722 |
+
self,
|
723 |
+
hidden_states: torch.FloatTensor,
|
724 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
725 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
726 |
+
**cross_attention_kwargs,
|
727 |
+
) -> torch.Tensor:
|
728 |
+
r"""
|
729 |
+
The forward method of the `Attention` class.
|
730 |
+
|
731 |
+
Args:
|
732 |
+
hidden_states (`torch.Tensor`):
|
733 |
+
The hidden states of the query.
|
734 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
735 |
+
The hidden states of the encoder.
|
736 |
+
attention_mask (`torch.Tensor`, *optional*):
|
737 |
+
The attention mask to use. If `None`, no mask is applied.
|
738 |
+
**cross_attention_kwargs:
|
739 |
+
Additional keyword arguments to pass along to the cross attention.
|
740 |
+
|
741 |
+
Returns:
|
742 |
+
`torch.Tensor`: The output of the attention layer.
|
743 |
+
"""
|
744 |
+
# The `Attention` class can call different attention processors / attention functions
|
745 |
+
# here we simply pass along all tensors to the selected processor class
|
746 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
747 |
+
return self.processor(
|
748 |
+
self,
|
749 |
+
hidden_states,
|
750 |
+
encoder_hidden_states=encoder_hidden_states,
|
751 |
+
attention_mask=attention_mask,
|
752 |
+
**cross_attention_kwargs,
|
753 |
+
)
|
754 |
+
|
755 |
+
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
|
756 |
+
r"""
|
757 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
|
758 |
+
is the number of heads initialized while constructing the `Attention` class.
|
759 |
+
|
760 |
+
Args:
|
761 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
762 |
+
|
763 |
+
Returns:
|
764 |
+
`torch.Tensor`: The reshaped tensor.
|
765 |
+
"""
|
766 |
+
head_size = self.heads
|
767 |
+
batch_size, seq_len, dim = tensor.shape
|
768 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
769 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
770 |
+
return tensor
|
771 |
+
|
772 |
+
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
|
773 |
+
r"""
|
774 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
|
775 |
+
the number of heads initialized while constructing the `Attention` class.
|
776 |
+
|
777 |
+
Args:
|
778 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
779 |
+
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
|
780 |
+
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
|
781 |
+
|
782 |
+
Returns:
|
783 |
+
`torch.Tensor`: The reshaped tensor.
|
784 |
+
"""
|
785 |
+
head_size = self.heads
|
786 |
+
batch_size, seq_len, dim = tensor.shape
|
787 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
788 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
789 |
+
|
790 |
+
if out_dim == 3:
|
791 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
792 |
+
|
793 |
+
return tensor
|
794 |
+
|
795 |
+
def get_attention_scores(
|
796 |
+
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
|
797 |
+
) -> torch.Tensor:
|
798 |
+
r"""
|
799 |
+
Compute the attention scores.
|
800 |
+
|
801 |
+
Args:
|
802 |
+
query (`torch.Tensor`): The query tensor.
|
803 |
+
key (`torch.Tensor`): The key tensor.
|
804 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
805 |
+
|
806 |
+
Returns:
|
807 |
+
`torch.Tensor`: The attention probabilities/scores.
|
808 |
+
"""
|
809 |
+
dtype = query.dtype
|
810 |
+
if self.upcast_attention:
|
811 |
+
query = query.float()
|
812 |
+
key = key.float()
|
813 |
+
|
814 |
+
if attention_mask is None:
|
815 |
+
baddbmm_input = torch.empty(
|
816 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
817 |
+
)
|
818 |
+
beta = 0
|
819 |
+
else:
|
820 |
+
baddbmm_input = attention_mask
|
821 |
+
beta = 1
|
822 |
+
|
823 |
+
attention_scores = torch.baddbmm(
|
824 |
+
baddbmm_input,
|
825 |
+
query,
|
826 |
+
key.transpose(-1, -2),
|
827 |
+
beta=beta,
|
828 |
+
alpha=self.scale,
|
829 |
+
)
|
830 |
+
del baddbmm_input
|
831 |
+
|
832 |
+
if self.upcast_softmax:
|
833 |
+
attention_scores = attention_scores.float()
|
834 |
+
|
835 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
836 |
+
del attention_scores
|
837 |
+
|
838 |
+
attention_probs = attention_probs.to(dtype)
|
839 |
+
|
840 |
+
return attention_probs
|
841 |
+
|
842 |
+
def prepare_attention_mask(
|
843 |
+
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None,
|
844 |
+
) -> torch.Tensor:
|
845 |
+
r"""
|
846 |
+
Prepare the attention mask for the attention computation.
|
847 |
+
|
848 |
+
Args:
|
849 |
+
attention_mask (`torch.Tensor`):
|
850 |
+
The attention mask to prepare.
|
851 |
+
target_length (`int`):
|
852 |
+
The target length of the attention mask. This is the length of the attention mask after padding.
|
853 |
+
batch_size (`int`):
|
854 |
+
The batch size, which is used to repeat the attention mask.
|
855 |
+
out_dim (`int`, *optional*, defaults to `3`):
|
856 |
+
The output dimension of the attention mask. Can be either `3` or `4`.
|
857 |
+
|
858 |
+
Returns:
|
859 |
+
`torch.Tensor`: The prepared attention mask.
|
860 |
+
"""
|
861 |
+
head_size = head_size if head_size is not None else self.heads
|
862 |
+
if attention_mask is None:
|
863 |
+
return attention_mask
|
864 |
+
|
865 |
+
current_length: int = attention_mask.shape[-1]
|
866 |
+
if current_length != target_length:
|
867 |
+
if attention_mask.device.type == "mps":
|
868 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
869 |
+
# Instead, we can manually construct the padding tensor.
|
870 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
871 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
872 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
873 |
+
else:
|
874 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
875 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
876 |
+
# remaining_length: int = target_length - current_length
|
877 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
878 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
879 |
+
|
880 |
+
if out_dim == 3:
|
881 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
882 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
883 |
+
elif out_dim == 4:
|
884 |
+
attention_mask = attention_mask.unsqueeze(1)
|
885 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
886 |
+
|
887 |
+
return attention_mask
|
888 |
+
|
889 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
890 |
+
r"""
|
891 |
+
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
|
892 |
+
`Attention` class.
|
893 |
+
|
894 |
+
Args:
|
895 |
+
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
|
896 |
+
|
897 |
+
Returns:
|
898 |
+
`torch.Tensor`: The normalized encoder hidden states.
|
899 |
+
"""
|
900 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
901 |
+
|
902 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
903 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
904 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
905 |
+
# Group norm norms along the channels dimension and expects
|
906 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
907 |
+
# to norm along the hidden dimension, so we need to move
|
908 |
+
# (batch_size, sequence_length, hidden_size) ->
|
909 |
+
# (batch_size, hidden_size, sequence_length)
|
910 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
911 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
912 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
913 |
+
else:
|
914 |
+
assert False
|
915 |
+
|
916 |
+
return encoder_hidden_states
|
917 |
+
|
918 |
+
def _init_compress(self):
|
919 |
+
self.sr.bias.data.zero_()
|
920 |
+
self.norm = nn.LayerNorm(self.inner_dim)
|
921 |
+
|
922 |
+
|
923 |
+
class AttnProcessor2_0(nn.Module):
|
924 |
+
r"""
|
925 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
926 |
+
"""
|
927 |
+
|
928 |
+
def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None):
|
929 |
+
super().__init__()
|
930 |
+
self.attention_mode = attention_mode
|
931 |
+
self.use_rope = use_rope
|
932 |
+
self.interpolation_scale_thw = interpolation_scale_thw
|
933 |
+
|
934 |
+
if self.use_rope:
|
935 |
+
self._init_rope(interpolation_scale_thw)
|
936 |
+
|
937 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
938 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
939 |
+
|
940 |
+
def _init_rope(self, interpolation_scale_thw):
|
941 |
+
self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw)
|
942 |
+
self.position_getter = PositionGetter3D()
|
943 |
+
|
944 |
+
def __call__(
|
945 |
+
self,
|
946 |
+
attn: Attention,
|
947 |
+
hidden_states: torch.FloatTensor,
|
948 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
949 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
950 |
+
temb: Optional[torch.FloatTensor] = None,
|
951 |
+
frame: int = 8,
|
952 |
+
height: int = 16,
|
953 |
+
width: int = 16,
|
954 |
+
) -> torch.FloatTensor:
|
955 |
+
|
956 |
+
residual = hidden_states
|
957 |
+
|
958 |
+
if attn.spatial_norm is not None:
|
959 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
960 |
+
|
961 |
+
input_ndim = hidden_states.ndim
|
962 |
+
|
963 |
+
if input_ndim == 4:
|
964 |
+
batch_size, channel, height, width = hidden_states.shape
|
965 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
966 |
+
|
967 |
+
|
968 |
+
batch_size, sequence_length, _ = (
|
969 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
970 |
+
)
|
971 |
+
|
972 |
+
if attention_mask is not None and self.attention_mode == 'xformers':
|
973 |
+
attention_heads = attn.heads
|
974 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads)
|
975 |
+
attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1])
|
976 |
+
else:
|
977 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
978 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
979 |
+
# (batch, heads, source_length, target_length)
|
980 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
981 |
+
|
982 |
+
if attn.group_norm is not None:
|
983 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
984 |
+
|
985 |
+
query = attn.to_q(hidden_states)
|
986 |
+
|
987 |
+
if encoder_hidden_states is None:
|
988 |
+
encoder_hidden_states = hidden_states
|
989 |
+
elif attn.norm_cross:
|
990 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
991 |
+
|
992 |
+
key = attn.to_k(encoder_hidden_states)
|
993 |
+
value = attn.to_v(encoder_hidden_states)
|
994 |
+
|
995 |
+
|
996 |
+
|
997 |
+
attn_heads = attn.heads
|
998 |
+
|
999 |
+
inner_dim = key.shape[-1]
|
1000 |
+
head_dim = inner_dim // attn_heads
|
1001 |
+
|
1002 |
+
query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
1003 |
+
key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
1004 |
+
value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
1005 |
+
|
1006 |
+
|
1007 |
+
if self.use_rope:
|
1008 |
+
# require the shape of (batch_size x nheads x ntokens x dim)
|
1009 |
+
pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device)
|
1010 |
+
query = self.rope(query, pos_thw)
|
1011 |
+
key = self.rope(key, pos_thw)
|
1012 |
+
|
1013 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1014 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1015 |
+
if self.attention_mode == 'flash':
|
1016 |
+
# assert attention_mask is None, 'flash-attn do not support attention_mask'
|
1017 |
+
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
1018 |
+
hidden_states = F.scaled_dot_product_attention(
|
1019 |
+
query, key, value, dropout_p=0.0, is_causal=False
|
1020 |
+
)
|
1021 |
+
elif self.attention_mode == 'xformers':
|
1022 |
+
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
|
1023 |
+
hidden_states = F.scaled_dot_product_attention(
|
1024 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
|
1028 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim)
|
1029 |
+
hidden_states = hidden_states.to(query.dtype)
|
1030 |
+
|
1031 |
+
# linear proj
|
1032 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1033 |
+
# dropout
|
1034 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1035 |
+
|
1036 |
+
if input_ndim == 4:
|
1037 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1038 |
+
|
1039 |
+
if attn.residual_connection:
|
1040 |
+
hidden_states = hidden_states + residual
|
1041 |
+
|
1042 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1043 |
+
|
1044 |
+
return hidden_states
|
1045 |
+
|
1046 |
+
class FeedForward(nn.Module):
|
1047 |
+
r"""
|
1048 |
+
A feed-forward layer.
|
1049 |
+
|
1050 |
+
Parameters:
|
1051 |
+
dim (`int`): The number of channels in the input.
|
1052 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
1053 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
1054 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1055 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1056 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
1057 |
+
"""
|
1058 |
+
|
1059 |
+
def __init__(
|
1060 |
+
self,
|
1061 |
+
dim: int,
|
1062 |
+
dim_out: Optional[int] = None,
|
1063 |
+
mult: int = 4,
|
1064 |
+
dropout: float = 0.0,
|
1065 |
+
activation_fn: str = "geglu",
|
1066 |
+
final_dropout: bool = False,
|
1067 |
+
):
|
1068 |
+
super().__init__()
|
1069 |
+
inner_dim = int(dim * mult)
|
1070 |
+
dim_out = dim_out if dim_out is not None else dim
|
1071 |
+
linear_cls = nn.Linear
|
1072 |
+
|
1073 |
+
if activation_fn == "gelu":
|
1074 |
+
act_fn = GELU(dim, inner_dim)
|
1075 |
+
if activation_fn == "gelu-approximate":
|
1076 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
1077 |
+
elif activation_fn == "geglu":
|
1078 |
+
act_fn = GEGLU(dim, inner_dim)
|
1079 |
+
elif activation_fn == "geglu-approximate":
|
1080 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
1081 |
+
|
1082 |
+
self.net = nn.ModuleList([])
|
1083 |
+
# project in
|
1084 |
+
self.net.append(act_fn)
|
1085 |
+
# project dropout
|
1086 |
+
self.net.append(nn.Dropout(dropout))
|
1087 |
+
# project out
|
1088 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
1089 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
1090 |
+
if final_dropout:
|
1091 |
+
self.net.append(nn.Dropout(dropout))
|
1092 |
+
|
1093 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1094 |
+
for module in self.net:
|
1095 |
+
hidden_states = module(hidden_states)
|
1096 |
+
return hidden_states
|
1097 |
+
|
1098 |
+
|
1099 |
+
@maybe_allow_in_graph
|
1100 |
+
class BasicTransformerBlock(nn.Module):
|
1101 |
+
r"""
|
1102 |
+
A basic Transformer block.
|
1103 |
+
|
1104 |
+
Parameters:
|
1105 |
+
dim (`int`): The number of channels in the input and output.
|
1106 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
1107 |
+
attention_head_dim (`int`): The number of channels in each head.
|
1108 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1109 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
1110 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1111 |
+
num_embeds_ada_norm (:
|
1112 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
1113 |
+
attention_bias (:
|
1114 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
1115 |
+
only_cross_attention (`bool`, *optional*):
|
1116 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
1117 |
+
double_self_attention (`bool`, *optional*):
|
1118 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
1119 |
+
upcast_attention (`bool`, *optional*):
|
1120 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
1121 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
1122 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
1123 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
1124 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
1125 |
+
final_dropout (`bool` *optional*, defaults to False):
|
1126 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
1127 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
1128 |
+
The type of positional embeddings to apply to.
|
1129 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
1130 |
+
The maximum number of positional embeddings to apply.
|
1131 |
+
"""
|
1132 |
+
|
1133 |
+
def __init__(
|
1134 |
+
self,
|
1135 |
+
dim: int,
|
1136 |
+
num_attention_heads: int,
|
1137 |
+
attention_head_dim: int,
|
1138 |
+
dropout=0.0,
|
1139 |
+
cross_attention_dim: Optional[int] = None,
|
1140 |
+
activation_fn: str = "geglu",
|
1141 |
+
num_embeds_ada_norm: Optional[int] = None,
|
1142 |
+
attention_bias: bool = False,
|
1143 |
+
only_cross_attention: bool = False,
|
1144 |
+
double_self_attention: bool = False,
|
1145 |
+
upcast_attention: bool = False,
|
1146 |
+
norm_elementwise_affine: bool = True,
|
1147 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
1148 |
+
norm_eps: float = 1e-5,
|
1149 |
+
final_dropout: bool = False,
|
1150 |
+
positional_embeddings: Optional[str] = None,
|
1151 |
+
num_positional_embeddings: Optional[int] = None,
|
1152 |
+
sa_attention_mode: str = "flash",
|
1153 |
+
ca_attention_mode: str = "xformers",
|
1154 |
+
use_rope: bool = False,
|
1155 |
+
interpolation_scale_thw: Tuple[int] = (1, 1, 1),
|
1156 |
+
block_idx: Optional[int] = None,
|
1157 |
+
):
|
1158 |
+
super().__init__()
|
1159 |
+
self.only_cross_attention = only_cross_attention
|
1160 |
+
|
1161 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
1162 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
1163 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
1164 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
1165 |
+
|
1166 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
1167 |
+
raise ValueError(
|
1168 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
1169 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
1173 |
+
raise ValueError(
|
1174 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
if positional_embeddings == "sinusoidal":
|
1178 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
1179 |
+
else:
|
1180 |
+
self.pos_embed = None
|
1181 |
+
|
1182 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
1183 |
+
# 1. Self-Attn
|
1184 |
+
if self.use_ada_layer_norm:
|
1185 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
1186 |
+
elif self.use_ada_layer_norm_zero:
|
1187 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
1188 |
+
else:
|
1189 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1190 |
+
|
1191 |
+
self.attn1 = Attention(
|
1192 |
+
query_dim=dim,
|
1193 |
+
heads=num_attention_heads,
|
1194 |
+
dim_head=attention_head_dim,
|
1195 |
+
dropout=dropout,
|
1196 |
+
bias=attention_bias,
|
1197 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
1198 |
+
upcast_attention=upcast_attention,
|
1199 |
+
attention_mode=sa_attention_mode,
|
1200 |
+
use_rope=use_rope,
|
1201 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
# 2. Cross-Attn
|
1205 |
+
if cross_attention_dim is not None or double_self_attention:
|
1206 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
1207 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
1208 |
+
# the second cross attention block.
|
1209 |
+
self.norm2 = (
|
1210 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
1211 |
+
if self.use_ada_layer_norm
|
1212 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1213 |
+
)
|
1214 |
+
self.attn2 = Attention(
|
1215 |
+
query_dim=dim,
|
1216 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
1217 |
+
heads=num_attention_heads,
|
1218 |
+
dim_head=attention_head_dim,
|
1219 |
+
dropout=dropout,
|
1220 |
+
bias=attention_bias,
|
1221 |
+
upcast_attention=upcast_attention,
|
1222 |
+
attention_mode=ca_attention_mode, # only xformers support attention_mask
|
1223 |
+
use_rope=False, # do not position in cross attention
|
1224 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1225 |
+
) # is self-attn if encoder_hidden_states is none
|
1226 |
+
else:
|
1227 |
+
self.norm2 = None
|
1228 |
+
self.attn2 = None
|
1229 |
+
|
1230 |
+
# 3. Feed-forward
|
1231 |
+
|
1232 |
+
if not self.use_ada_layer_norm_single:
|
1233 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1234 |
+
|
1235 |
+
self.ff = FeedForward(
|
1236 |
+
dim,
|
1237 |
+
dropout=dropout,
|
1238 |
+
activation_fn=activation_fn,
|
1239 |
+
final_dropout=final_dropout,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
# 5. Scale-shift for PixArt-Alpha.
|
1243 |
+
if self.use_ada_layer_norm_single:
|
1244 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
1245 |
+
|
1246 |
+
|
1247 |
+
def forward(
|
1248 |
+
self,
|
1249 |
+
hidden_states: torch.FloatTensor,
|
1250 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1251 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1252 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1253 |
+
timestep: Optional[torch.LongTensor] = None,
|
1254 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1255 |
+
class_labels: Optional[torch.LongTensor] = None,
|
1256 |
+
frame: int = None,
|
1257 |
+
height: int = None,
|
1258 |
+
width: int = None,
|
1259 |
+
) -> torch.FloatTensor:
|
1260 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1261 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
1262 |
+
|
1263 |
+
# 0. Self-Attention
|
1264 |
+
batch_size = hidden_states.shape[0]
|
1265 |
+
|
1266 |
+
if self.use_ada_layer_norm:
|
1267 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
1268 |
+
elif self.use_ada_layer_norm_zero:
|
1269 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
1270 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
1271 |
+
)
|
1272 |
+
elif self.use_layer_norm:
|
1273 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1274 |
+
elif self.use_ada_layer_norm_single:
|
1275 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
1276 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
1277 |
+
).chunk(6, dim=1)
|
1278 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1279 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
1280 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
1281 |
+
else:
|
1282 |
+
raise ValueError("Incorrect norm used")
|
1283 |
+
|
1284 |
+
if self.pos_embed is not None:
|
1285 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1286 |
+
|
1287 |
+
attn_output = self.attn1(
|
1288 |
+
norm_hidden_states,
|
1289 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1290 |
+
attention_mask=attention_mask,
|
1291 |
+
frame=frame,
|
1292 |
+
height=height,
|
1293 |
+
width=width,
|
1294 |
+
**cross_attention_kwargs,
|
1295 |
+
)
|
1296 |
+
if self.use_ada_layer_norm_zero:
|
1297 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1298 |
+
elif self.use_ada_layer_norm_single:
|
1299 |
+
attn_output = gate_msa * attn_output
|
1300 |
+
|
1301 |
+
hidden_states = attn_output + hidden_states
|
1302 |
+
if hidden_states.ndim == 4:
|
1303 |
+
hidden_states = hidden_states.squeeze(1)
|
1304 |
+
|
1305 |
+
# 1. Cross-Attention
|
1306 |
+
if self.attn2 is not None:
|
1307 |
+
|
1308 |
+
if self.use_ada_layer_norm:
|
1309 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
1310 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
1311 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1312 |
+
elif self.use_ada_layer_norm_single:
|
1313 |
+
# For PixArt norm2 isn't applied here:
|
1314 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
1315 |
+
norm_hidden_states = hidden_states
|
1316 |
+
else:
|
1317 |
+
raise ValueError("Incorrect norm")
|
1318 |
+
|
1319 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
1320 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1321 |
+
|
1322 |
+
attn_output = self.attn2(
|
1323 |
+
norm_hidden_states,
|
1324 |
+
encoder_hidden_states=encoder_hidden_states,
|
1325 |
+
attention_mask=encoder_attention_mask,
|
1326 |
+
**cross_attention_kwargs,
|
1327 |
+
)
|
1328 |
+
hidden_states = attn_output + hidden_states
|
1329 |
+
|
1330 |
+
|
1331 |
+
# 2. Feed-forward
|
1332 |
+
if not self.use_ada_layer_norm_single:
|
1333 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1334 |
+
|
1335 |
+
if self.use_ada_layer_norm_zero:
|
1336 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1337 |
+
|
1338 |
+
if self.use_ada_layer_norm_single:
|
1339 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1340 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
1341 |
+
|
1342 |
+
ff_output = self.ff(norm_hidden_states)
|
1343 |
+
|
1344 |
+
if self.use_ada_layer_norm_zero:
|
1345 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1346 |
+
elif self.use_ada_layer_norm_single:
|
1347 |
+
ff_output = gate_mlp * ff_output
|
1348 |
+
|
1349 |
+
|
1350 |
+
hidden_states = ff_output + hidden_states
|
1351 |
+
if hidden_states.ndim == 4:
|
1352 |
+
hidden_states = hidden_states.squeeze(1)
|
1353 |
+
|
1354 |
+
return hidden_states
|
1355 |
+
|
1356 |
+
|
1357 |
+
class AdaLayerNormSingle(nn.Module):
|
1358 |
+
r"""
|
1359 |
+
Norm layer adaptive layer norm single (adaLN-single).
|
1360 |
+
|
1361 |
+
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
|
1362 |
+
|
1363 |
+
Parameters:
|
1364 |
+
embedding_dim (`int`): The size of each embedding vector.
|
1365 |
+
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
|
1366 |
+
"""
|
1367 |
+
|
1368 |
+
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
|
1369 |
+
super().__init__()
|
1370 |
+
|
1371 |
+
self.emb = CombinedTimestepSizeEmbeddings(
|
1372 |
+
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
|
1373 |
+
)
|
1374 |
+
|
1375 |
+
self.silu = nn.SiLU()
|
1376 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
1377 |
+
|
1378 |
+
def forward(
|
1379 |
+
self,
|
1380 |
+
timestep: torch.Tensor,
|
1381 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
1382 |
+
batch_size: int = None,
|
1383 |
+
hidden_dtype: Optional[torch.dtype] = None,
|
1384 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
1385 |
+
# No modulation happening here.
|
1386 |
+
embedded_timestep = self.emb(
|
1387 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None
|
1388 |
+
)
|
1389 |
+
return self.linear(self.silu(embedded_timestep)), embedded_timestep
|
1390 |
+
|
1391 |
+
|
1392 |
+
@dataclass
|
1393 |
+
class Transformer3DModelOutput(BaseOutput):
|
1394 |
+
"""
|
1395 |
+
The output of [`Transformer2DModel`].
|
1396 |
+
|
1397 |
+
Args:
|
1398 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
1399 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
1400 |
+
distributions for the unnoised latent pixels.
|
1401 |
+
"""
|
1402 |
+
|
1403 |
+
sample: torch.FloatTensor
|
1404 |
+
|
1405 |
+
|
1406 |
+
class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
|
1407 |
+
_supports_gradient_checkpointing = True
|
1408 |
+
|
1409 |
+
"""
|
1410 |
+
A 2D Transformer model for image-like data.
|
1411 |
+
|
1412 |
+
Parameters:
|
1413 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
1414 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
1415 |
+
in_channels (`int`, *optional*):
|
1416 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
1417 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
1418 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1419 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
1420 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
1421 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
1422 |
+
num_vector_embeds (`int`, *optional*):
|
1423 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
1424 |
+
Includes the class for the masked latent pixel.
|
1425 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
1426 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
1427 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
1428 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
1429 |
+
added to the hidden states.
|
1430 |
+
|
1431 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
1432 |
+
attention_bias (`bool`, *optional*):
|
1433 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
1434 |
+
"""
|
1435 |
+
|
1436 |
+
@register_to_config
|
1437 |
+
def __init__(
|
1438 |
+
self,
|
1439 |
+
num_attention_heads: int = 16,
|
1440 |
+
attention_head_dim: int = 88,
|
1441 |
+
in_channels: Optional[int] = None,
|
1442 |
+
out_channels: Optional[int] = None,
|
1443 |
+
num_layers: int = 1,
|
1444 |
+
dropout: float = 0.0,
|
1445 |
+
cross_attention_dim: Optional[int] = None,
|
1446 |
+
attention_bias: bool = False,
|
1447 |
+
sample_size: Optional[int] = None,
|
1448 |
+
sample_size_t: Optional[int] = None,
|
1449 |
+
patch_size: Optional[int] = None,
|
1450 |
+
patch_size_t: Optional[int] = None,
|
1451 |
+
activation_fn: str = "geglu",
|
1452 |
+
num_embeds_ada_norm: Optional[int] = None,
|
1453 |
+
use_linear_projection: bool = False,
|
1454 |
+
only_cross_attention: bool = False,
|
1455 |
+
double_self_attention: bool = False,
|
1456 |
+
upcast_attention: bool = False,
|
1457 |
+
norm_type: str = "ada_norm",
|
1458 |
+
norm_elementwise_affine: bool = True,
|
1459 |
+
norm_eps: float = 1e-5,
|
1460 |
+
caption_channels: int = None,
|
1461 |
+
interpolation_scale_h: float = None,
|
1462 |
+
interpolation_scale_w: float = None,
|
1463 |
+
interpolation_scale_t: float = None,
|
1464 |
+
use_additional_conditions: Optional[bool] = None,
|
1465 |
+
sa_attention_mode: str = "flash",
|
1466 |
+
ca_attention_mode: str = 'xformers',
|
1467 |
+
downsampler: str = None,
|
1468 |
+
use_rope: bool = False,
|
1469 |
+
model_max_length: int = 300,
|
1470 |
+
):
|
1471 |
+
super().__init__()
|
1472 |
+
self.use_linear_projection = use_linear_projection
|
1473 |
+
self.interpolation_scale_t = interpolation_scale_t
|
1474 |
+
self.interpolation_scale_h = interpolation_scale_h
|
1475 |
+
self.interpolation_scale_w = interpolation_scale_w
|
1476 |
+
self.downsampler = downsampler
|
1477 |
+
self.caption_channels = caption_channels
|
1478 |
+
self.num_attention_heads = num_attention_heads
|
1479 |
+
self.attention_head_dim = attention_head_dim
|
1480 |
+
inner_dim = num_attention_heads * attention_head_dim
|
1481 |
+
self.inner_dim = inner_dim
|
1482 |
+
self.in_channels = in_channels
|
1483 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
1484 |
+
self.use_rope = use_rope
|
1485 |
+
self.model_max_length = model_max_length
|
1486 |
+
self.num_layers = num_layers
|
1487 |
+
self.config.hidden_size = inner_dim
|
1488 |
+
|
1489 |
+
|
1490 |
+
# 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
1491 |
+
# Define whether input is continuous or discrete depending on configuration
|
1492 |
+
assert in_channels is not None and patch_size is not None
|
1493 |
+
|
1494 |
+
# 2. Initialize the right blocks.
|
1495 |
+
# Initialize the output blocks and other projection blocks when necessary.
|
1496 |
+
|
1497 |
+
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t"
|
1498 |
+
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size"
|
1499 |
+
#assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim"
|
1500 |
+
|
1501 |
+
self.num_frames = self.config.sample_size_t
|
1502 |
+
self.config.sample_size = to_2tuple(self.config.sample_size)
|
1503 |
+
self.height = self.config.sample_size[0]
|
1504 |
+
self.width = self.config.sample_size[1]
|
1505 |
+
self.patch_size_t = self.config.patch_size_t
|
1506 |
+
self.patch_size = self.config.patch_size
|
1507 |
+
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16
|
1508 |
+
interpolation_scale_t = (
|
1509 |
+
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t
|
1510 |
+
)
|
1511 |
+
interpolation_scale = (
|
1512 |
+
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30,
|
1513 |
+
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40,
|
1514 |
+
)
|
1515 |
+
self.pos_embed = PatchEmbed2D(
|
1516 |
+
num_frames=self.config.sample_size_t,
|
1517 |
+
height=self.config.sample_size[0],
|
1518 |
+
width=self.config.sample_size[1],
|
1519 |
+
patch_size_t=self.config.patch_size_t,
|
1520 |
+
patch_size=self.config.patch_size,
|
1521 |
+
in_channels=self.in_channels,
|
1522 |
+
embed_dim=self.inner_dim,
|
1523 |
+
interpolation_scale=interpolation_scale,
|
1524 |
+
interpolation_scale_t=interpolation_scale_t,
|
1525 |
+
use_abs_pos=not self.config.use_rope,
|
1526 |
+
)
|
1527 |
+
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale)
|
1528 |
+
|
1529 |
+
# 3. Define transformers blocks, spatial attention
|
1530 |
+
self.transformer_blocks = nn.ModuleList(
|
1531 |
+
[
|
1532 |
+
BasicTransformerBlock(
|
1533 |
+
inner_dim,
|
1534 |
+
num_attention_heads,
|
1535 |
+
attention_head_dim,
|
1536 |
+
dropout=dropout,
|
1537 |
+
cross_attention_dim=cross_attention_dim,
|
1538 |
+
activation_fn=activation_fn,
|
1539 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
1540 |
+
attention_bias=attention_bias,
|
1541 |
+
only_cross_attention=only_cross_attention,
|
1542 |
+
double_self_attention=double_self_attention,
|
1543 |
+
upcast_attention=upcast_attention,
|
1544 |
+
norm_type=norm_type,
|
1545 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
1546 |
+
norm_eps=norm_eps,
|
1547 |
+
sa_attention_mode=sa_attention_mode,
|
1548 |
+
ca_attention_mode=ca_attention_mode,
|
1549 |
+
use_rope=use_rope,
|
1550 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1551 |
+
block_idx=d,
|
1552 |
+
)
|
1553 |
+
for d in range(num_layers)
|
1554 |
+
]
|
1555 |
+
)
|
1556 |
+
|
1557 |
+
# 4. Define output layers
|
1558 |
+
|
1559 |
+
if norm_type != "ada_norm_single":
|
1560 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
1561 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
1562 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
1563 |
+
elif norm_type == "ada_norm_single":
|
1564 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
1565 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
1566 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
1567 |
+
|
1568 |
+
# 5. PixArt-Alpha blocks.
|
1569 |
+
self.adaln_single = None
|
1570 |
+
self.use_additional_conditions = False
|
1571 |
+
if norm_type == "ada_norm_single":
|
1572 |
+
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024
|
1573 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
1574 |
+
# additional conditions until we find better name
|
1575 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
1576 |
+
|
1577 |
+
self.caption_projection = None
|
1578 |
+
if caption_channels is not None:
|
1579 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
1580 |
+
in_features=caption_channels, hidden_size=inner_dim
|
1581 |
+
)
|
1582 |
+
|
1583 |
+
self.gradient_checkpointing = False
|
1584 |
+
|
1585 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1586 |
+
self.gradient_checkpointing = value
|
1587 |
+
|
1588 |
+
|
1589 |
+
def forward(
|
1590 |
+
self,
|
1591 |
+
hidden_states: torch.Tensor,
|
1592 |
+
timestep: Optional[torch.LongTensor] = None,
|
1593 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1594 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
1595 |
+
class_labels: Optional[torch.LongTensor] = None,
|
1596 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1597 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1598 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1599 |
+
return_dict: bool = True,
|
1600 |
+
):
|
1601 |
+
"""
|
1602 |
+
The [`Transformer2DModel`] forward method.
|
1603 |
+
|
1604 |
+
Args:
|
1605 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
|
1606 |
+
Input `hidden_states`.
|
1607 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
1608 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
1609 |
+
self-attention.
|
1610 |
+
timestep ( `torch.LongTensor`, *optional*):
|
1611 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
1612 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
1613 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
1614 |
+
`AdaLayerZeroNorm`.
|
1615 |
+
added_cond_kwargs ( `Dict[str, Any]`, *optional*):
|
1616 |
+
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle`
|
1617 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
1618 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1619 |
+
`self.processor` in
|
1620 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1621 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
1622 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1623 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1624 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1625 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
1626 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
1627 |
+
|
1628 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
1629 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
1630 |
+
|
1631 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
1632 |
+
above. This bias will be added to the cross-attention scores.
|
1633 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1634 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1635 |
+
tuple.
|
1636 |
+
|
1637 |
+
Returns:
|
1638 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
1639 |
+
`tuple` where the first element is the sample tensor.
|
1640 |
+
"""
|
1641 |
+
batch_size, c, frame, h, w = hidden_states.shape
|
1642 |
+
|
1643 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
1644 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
1645 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
1646 |
+
# expects mask of shape:
|
1647 |
+
# [batch, key_tokens]
|
1648 |
+
# adds singleton query_tokens dimension:
|
1649 |
+
# [batch, 1, key_tokens]
|
1650 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1651 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1652 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
|
1653 |
+
if attention_mask is not None and attention_mask.ndim == 4:
|
1654 |
+
# assume that mask is expressed as:
|
1655 |
+
# (1 = keep, 0 = discard)
|
1656 |
+
# convert mask into a bias that can be added to attention scores:
|
1657 |
+
# (keep = +0, discard = -10000.0)
|
1658 |
+
# b, frame+use_image_num, h, w -> a video with images
|
1659 |
+
# b, 1, h, w -> only images
|
1660 |
+
attention_mask = attention_mask.to(self.dtype)
|
1661 |
+
attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w
|
1662 |
+
|
1663 |
+
if attention_mask_vid.numel() > 0:
|
1664 |
+
attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w
|
1665 |
+
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size),
|
1666 |
+
stride=(self.patch_size_t, self.patch_size, self.patch_size))
|
1667 |
+
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)')
|
1668 |
+
|
1669 |
+
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None
|
1670 |
+
|
1671 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1672 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3:
|
1673 |
+
# b, 1+use_image_num, l -> a video with images
|
1674 |
+
# b, 1, l -> only images
|
1675 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
|
1676 |
+
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None
|
1677 |
+
|
1678 |
+
# 1. Input
|
1679 |
+
frame = frame // self.patch_size_t # patchfy
|
1680 |
+
# print('frame', frame)
|
1681 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
1682 |
+
|
1683 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs
|
1684 |
+
hidden_states, encoder_hidden_states_vid, \
|
1685 |
+
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs(
|
1686 |
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size,
|
1687 |
+
)
|
1688 |
+
|
1689 |
+
|
1690 |
+
for _, block in enumerate(self.transformer_blocks):
|
1691 |
+
hidden_states = block(
|
1692 |
+
hidden_states,
|
1693 |
+
attention_mask_vid,
|
1694 |
+
encoder_hidden_states_vid,
|
1695 |
+
encoder_attention_mask_vid,
|
1696 |
+
timestep_vid,
|
1697 |
+
cross_attention_kwargs,
|
1698 |
+
class_labels,
|
1699 |
+
frame=frame,
|
1700 |
+
height=height,
|
1701 |
+
width=width,
|
1702 |
+
)
|
1703 |
+
|
1704 |
+
# 3. Output
|
1705 |
+
output = None
|
1706 |
+
if hidden_states is not None:
|
1707 |
+
output = self._get_output_for_patched_inputs(
|
1708 |
+
hidden_states=hidden_states,
|
1709 |
+
timestep=timestep_vid,
|
1710 |
+
class_labels=class_labels,
|
1711 |
+
embedded_timestep=embedded_timestep_vid,
|
1712 |
+
num_frames=frame,
|
1713 |
+
height=height,
|
1714 |
+
width=width,
|
1715 |
+
) # b c t h w
|
1716 |
+
|
1717 |
+
if not return_dict:
|
1718 |
+
return (output,)
|
1719 |
+
|
1720 |
+
return Transformer3DModelOutput(sample=output)
|
1721 |
+
|
1722 |
+
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size):
|
1723 |
+
# batch_size = hidden_states.shape[0]
|
1724 |
+
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype))
|
1725 |
+
timestep_vid = None
|
1726 |
+
embedded_timestep_vid = None
|
1727 |
+
encoder_hidden_states_vid = None
|
1728 |
+
|
1729 |
+
if self.adaln_single is not None:
|
1730 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
1731 |
+
raise ValueError(
|
1732 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
1733 |
+
)
|
1734 |
+
timestep, embedded_timestep = self.adaln_single(
|
1735 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype
|
1736 |
+
) # b 6d, b d
|
1737 |
+
|
1738 |
+
timestep_vid = timestep
|
1739 |
+
embedded_timestep_vid = embedded_timestep
|
1740 |
+
|
1741 |
+
if self.caption_projection is not None:
|
1742 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d
|
1743 |
+
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d')
|
1744 |
+
|
1745 |
+
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid
|
1746 |
+
|
1747 |
+
def _get_output_for_patched_inputs(
|
1748 |
+
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None
|
1749 |
+
):
|
1750 |
+
# import ipdb;ipdb.set_trace()
|
1751 |
+
if self.config.norm_type != "ada_norm_single":
|
1752 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
1753 |
+
timestep, class_labels, hidden_dtype=self.dtype
|
1754 |
+
)
|
1755 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
1756 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
1757 |
+
hidden_states = self.proj_out_2(hidden_states)
|
1758 |
+
elif self.config.norm_type == "ada_norm_single":
|
1759 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
1760 |
+
hidden_states = self.norm_out(hidden_states)
|
1761 |
+
# Modulation
|
1762 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
1763 |
+
hidden_states = self.proj_out(hidden_states)
|
1764 |
+
hidden_states = hidden_states.squeeze(1)
|
1765 |
+
|
1766 |
+
# unpatchify
|
1767 |
+
if self.adaln_single is None:
|
1768 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
1769 |
+
hidden_states = hidden_states.reshape(
|
1770 |
+
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels)
|
1771 |
+
)
|
1772 |
+
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states)
|
1773 |
+
output = hidden_states.reshape(
|
1774 |
+
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size)
|
1775 |
+
)
|
1776 |
+
return output
|
vae/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AllegroAutoencoderKL3D",
|
3 |
+
"_diffusers_version": "0.28.0",
|
4 |
+
"_name_or_path": "/cpfs/data/user/larrytsai/Projects/Yi-VG/allegro_pipeline/vae",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"block_out_channels": [
|
7 |
+
128,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
512
|
11 |
+
],
|
12 |
+
"blocks_tempdown_li": [
|
13 |
+
true,
|
14 |
+
true,
|
15 |
+
false,
|
16 |
+
false
|
17 |
+
],
|
18 |
+
"blocks_tempup_li": [
|
19 |
+
false,
|
20 |
+
true,
|
21 |
+
true,
|
22 |
+
false
|
23 |
+
],
|
24 |
+
"chunk_len": 24,
|
25 |
+
"down_block_num": 4,
|
26 |
+
"force_upcast": true,
|
27 |
+
"in_channels": 3,
|
28 |
+
"latent_channels": 4,
|
29 |
+
"layers_per_block": 2,
|
30 |
+
"load_mode": "full",
|
31 |
+
"norm_num_groups": 32,
|
32 |
+
"out_channels": 3,
|
33 |
+
"sample_size": 320,
|
34 |
+
"scale_factor": 0.13,
|
35 |
+
"t_over": 8,
|
36 |
+
"tile_overlap": [
|
37 |
+
120,
|
38 |
+
80
|
39 |
+
],
|
40 |
+
"up_block_num": 4
|
41 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47871a698b18f92f15019d361a81cbc8af4676f8eef9a47fd2b95354a39f831a
|
3 |
+
size 699904972
|
vae/vae_allegro.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
import os
|
4 |
+
from typing import Dict, Optional, Tuple, Union
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
13 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
14 |
+
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
15 |
+
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
16 |
+
from diffusers.models.attention_processor import Attention
|
17 |
+
from diffusers.models.resnet import ResnetBlock2D
|
18 |
+
from diffusers.models.upsampling import Upsample2D
|
19 |
+
from diffusers.models.downsampling import Downsample2D
|
20 |
+
from diffusers.models.attention_processor import SpatialNorm
|
21 |
+
|
22 |
+
|
23 |
+
class TemporalConvBlock(nn.Module):
|
24 |
+
"""
|
25 |
+
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
26 |
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, in_dim, out_dim=None, dropout=0.0, up_sample=False, down_sample=False, spa_stride=1):
|
30 |
+
super().__init__()
|
31 |
+
out_dim = out_dim or in_dim
|
32 |
+
self.in_dim = in_dim
|
33 |
+
self.out_dim = out_dim
|
34 |
+
spa_pad = int((spa_stride-1)*0.5)
|
35 |
+
temp_pad = 0
|
36 |
+
self.temp_pad = temp_pad
|
37 |
+
|
38 |
+
if down_sample:
|
39 |
+
self.conv1 = nn.Sequential(
|
40 |
+
nn.GroupNorm(32, in_dim),
|
41 |
+
nn.SiLU(),
|
42 |
+
nn.Conv3d(in_dim, out_dim, (2, spa_stride, spa_stride), stride=(2,1,1), padding=(0, spa_pad, spa_pad))
|
43 |
+
)
|
44 |
+
elif up_sample:
|
45 |
+
self.conv1 = nn.Sequential(
|
46 |
+
nn.GroupNorm(32, in_dim),
|
47 |
+
nn.SiLU(),
|
48 |
+
nn.Conv3d(in_dim, out_dim*2, (1, spa_stride, spa_stride), padding=(0, spa_pad, spa_pad))
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
self.conv1 = nn.Sequential(
|
52 |
+
nn.GroupNorm(32, in_dim),
|
53 |
+
nn.SiLU(),
|
54 |
+
nn.Conv3d(in_dim, out_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad))
|
55 |
+
)
|
56 |
+
self.conv2 = nn.Sequential(
|
57 |
+
nn.GroupNorm(32, out_dim),
|
58 |
+
nn.SiLU(),
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
61 |
+
)
|
62 |
+
self.conv3 = nn.Sequential(
|
63 |
+
nn.GroupNorm(32, out_dim),
|
64 |
+
nn.SiLU(),
|
65 |
+
nn.Dropout(dropout),
|
66 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
67 |
+
)
|
68 |
+
self.conv4 = nn.Sequential(
|
69 |
+
nn.GroupNorm(32, out_dim),
|
70 |
+
nn.SiLU(),
|
71 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
72 |
+
)
|
73 |
+
|
74 |
+
# zero out the last layer params,so the conv block is identity
|
75 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
76 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
77 |
+
|
78 |
+
self.down_sample = down_sample
|
79 |
+
self.up_sample = up_sample
|
80 |
+
|
81 |
+
|
82 |
+
def forward(self, hidden_states):
|
83 |
+
identity = hidden_states
|
84 |
+
|
85 |
+
if self.down_sample:
|
86 |
+
identity = identity[:,:,::2]
|
87 |
+
elif self.up_sample:
|
88 |
+
hidden_states_new = torch.cat((hidden_states,hidden_states),dim=2)
|
89 |
+
hidden_states_new[:, :, 0::2] = hidden_states
|
90 |
+
hidden_states_new[:, :, 1::2] = hidden_states
|
91 |
+
identity = hidden_states_new
|
92 |
+
del hidden_states_new
|
93 |
+
|
94 |
+
if self.down_sample or self.up_sample:
|
95 |
+
hidden_states = self.conv1(hidden_states)
|
96 |
+
else:
|
97 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
98 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
99 |
+
hidden_states = self.conv1(hidden_states)
|
100 |
+
|
101 |
+
|
102 |
+
if self.up_sample:
|
103 |
+
hidden_states = rearrange(hidden_states, 'b (d c) f h w -> b c (f d) h w', d=2)
|
104 |
+
|
105 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
106 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
107 |
+
hidden_states = self.conv2(hidden_states)
|
108 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
109 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
110 |
+
hidden_states = self.conv3(hidden_states)
|
111 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
112 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
113 |
+
hidden_states = self.conv4(hidden_states)
|
114 |
+
|
115 |
+
hidden_states = identity + hidden_states
|
116 |
+
|
117 |
+
return hidden_states
|
118 |
+
|
119 |
+
|
120 |
+
class DownEncoderBlock3D(nn.Module):
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
in_channels: int,
|
124 |
+
out_channels: int,
|
125 |
+
dropout: float = 0.0,
|
126 |
+
num_layers: int = 1,
|
127 |
+
resnet_eps: float = 1e-6,
|
128 |
+
resnet_time_scale_shift: str = "default",
|
129 |
+
resnet_act_fn: str = "swish",
|
130 |
+
resnet_groups: int = 32,
|
131 |
+
resnet_pre_norm: bool = True,
|
132 |
+
output_scale_factor=1.0,
|
133 |
+
add_downsample=True,
|
134 |
+
add_temp_downsample=False,
|
135 |
+
downsample_padding=1,
|
136 |
+
):
|
137 |
+
super().__init__()
|
138 |
+
resnets = []
|
139 |
+
temp_convs = []
|
140 |
+
|
141 |
+
for i in range(num_layers):
|
142 |
+
in_channels = in_channels if i == 0 else out_channels
|
143 |
+
resnets.append(
|
144 |
+
ResnetBlock2D(
|
145 |
+
in_channels=in_channels,
|
146 |
+
out_channels=out_channels,
|
147 |
+
temb_channels=None,
|
148 |
+
eps=resnet_eps,
|
149 |
+
groups=resnet_groups,
|
150 |
+
dropout=dropout,
|
151 |
+
time_embedding_norm=resnet_time_scale_shift,
|
152 |
+
non_linearity=resnet_act_fn,
|
153 |
+
output_scale_factor=output_scale_factor,
|
154 |
+
pre_norm=resnet_pre_norm,
|
155 |
+
)
|
156 |
+
)
|
157 |
+
temp_convs.append(
|
158 |
+
TemporalConvBlock(
|
159 |
+
out_channels,
|
160 |
+
out_channels,
|
161 |
+
dropout=0.1,
|
162 |
+
)
|
163 |
+
)
|
164 |
+
|
165 |
+
self.resnets = nn.ModuleList(resnets)
|
166 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
167 |
+
|
168 |
+
if add_temp_downsample:
|
169 |
+
self.temp_convs_down = TemporalConvBlock(
|
170 |
+
out_channels,
|
171 |
+
out_channels,
|
172 |
+
dropout=0.1,
|
173 |
+
down_sample=True,
|
174 |
+
spa_stride=3
|
175 |
+
)
|
176 |
+
self.add_temp_downsample = add_temp_downsample
|
177 |
+
|
178 |
+
if add_downsample:
|
179 |
+
self.downsamplers = nn.ModuleList(
|
180 |
+
[
|
181 |
+
Downsample2D(
|
182 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
183 |
+
)
|
184 |
+
]
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
self.downsamplers = None
|
188 |
+
|
189 |
+
def _set_partial_grad(self):
|
190 |
+
for temp_conv in self.temp_convs:
|
191 |
+
temp_conv.requires_grad_(True)
|
192 |
+
if self.downsamplers:
|
193 |
+
for down_layer in self.downsamplers:
|
194 |
+
down_layer.requires_grad_(True)
|
195 |
+
|
196 |
+
def forward(self, hidden_states):
|
197 |
+
bz = hidden_states.shape[0]
|
198 |
+
|
199 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
200 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
201 |
+
hidden_states = resnet(hidden_states, temb=None)
|
202 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
203 |
+
hidden_states = temp_conv(hidden_states)
|
204 |
+
if self.add_temp_downsample:
|
205 |
+
hidden_states = self.temp_convs_down(hidden_states)
|
206 |
+
|
207 |
+
if self.downsamplers is not None:
|
208 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
209 |
+
for upsampler in self.downsamplers:
|
210 |
+
hidden_states = upsampler(hidden_states)
|
211 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
212 |
+
return hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
class UpDecoderBlock3D(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
in_channels: int,
|
219 |
+
out_channels: int,
|
220 |
+
dropout: float = 0.0,
|
221 |
+
num_layers: int = 1,
|
222 |
+
resnet_eps: float = 1e-6,
|
223 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
224 |
+
resnet_act_fn: str = "swish",
|
225 |
+
resnet_groups: int = 32,
|
226 |
+
resnet_pre_norm: bool = True,
|
227 |
+
output_scale_factor=1.0,
|
228 |
+
add_upsample=True,
|
229 |
+
add_temp_upsample=False,
|
230 |
+
temb_channels=None,
|
231 |
+
):
|
232 |
+
super().__init__()
|
233 |
+
self.add_upsample = add_upsample
|
234 |
+
|
235 |
+
resnets = []
|
236 |
+
temp_convs = []
|
237 |
+
|
238 |
+
for i in range(num_layers):
|
239 |
+
input_channels = in_channels if i == 0 else out_channels
|
240 |
+
|
241 |
+
resnets.append(
|
242 |
+
ResnetBlock2D(
|
243 |
+
in_channels=input_channels,
|
244 |
+
out_channels=out_channels,
|
245 |
+
temb_channels=temb_channels,
|
246 |
+
eps=resnet_eps,
|
247 |
+
groups=resnet_groups,
|
248 |
+
dropout=dropout,
|
249 |
+
time_embedding_norm=resnet_time_scale_shift,
|
250 |
+
non_linearity=resnet_act_fn,
|
251 |
+
output_scale_factor=output_scale_factor,
|
252 |
+
pre_norm=resnet_pre_norm,
|
253 |
+
)
|
254 |
+
)
|
255 |
+
temp_convs.append(
|
256 |
+
TemporalConvBlock(
|
257 |
+
out_channels,
|
258 |
+
out_channels,
|
259 |
+
dropout=0.1,
|
260 |
+
)
|
261 |
+
)
|
262 |
+
|
263 |
+
self.resnets = nn.ModuleList(resnets)
|
264 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
265 |
+
|
266 |
+
self.add_temp_upsample = add_temp_upsample
|
267 |
+
if add_temp_upsample:
|
268 |
+
self.temp_conv_up = TemporalConvBlock(
|
269 |
+
out_channels,
|
270 |
+
out_channels,
|
271 |
+
dropout=0.1,
|
272 |
+
up_sample=True,
|
273 |
+
spa_stride=3
|
274 |
+
)
|
275 |
+
|
276 |
+
|
277 |
+
if self.add_upsample:
|
278 |
+
# self.upsamplers = nn.ModuleList([PSUpsample2D(out_channels, use_conv=True, use_pixel_shuffle=True, out_channels=out_channels)])
|
279 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
280 |
+
else:
|
281 |
+
self.upsamplers = None
|
282 |
+
|
283 |
+
def _set_partial_grad(self):
|
284 |
+
for temp_conv in self.temp_convs:
|
285 |
+
temp_conv.requires_grad_(True)
|
286 |
+
if self.add_upsample:
|
287 |
+
self.upsamplers.requires_grad_(True)
|
288 |
+
|
289 |
+
def forward(self, hidden_states):
|
290 |
+
bz = hidden_states.shape[0]
|
291 |
+
|
292 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
293 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
294 |
+
hidden_states = resnet(hidden_states, temb=None)
|
295 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
296 |
+
hidden_states = temp_conv(hidden_states)
|
297 |
+
if self.add_temp_upsample:
|
298 |
+
hidden_states = self.temp_conv_up(hidden_states)
|
299 |
+
|
300 |
+
if self.upsamplers is not None:
|
301 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
302 |
+
for upsampler in self.upsamplers:
|
303 |
+
hidden_states = upsampler(hidden_states)
|
304 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
305 |
+
return hidden_states
|
306 |
+
|
307 |
+
|
308 |
+
class UNetMidBlock3DConv(nn.Module):
|
309 |
+
def __init__(
|
310 |
+
self,
|
311 |
+
in_channels: int,
|
312 |
+
temb_channels: int,
|
313 |
+
dropout: float = 0.0,
|
314 |
+
num_layers: int = 1,
|
315 |
+
resnet_eps: float = 1e-6,
|
316 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
317 |
+
resnet_act_fn: str = "swish",
|
318 |
+
resnet_groups: int = 32,
|
319 |
+
resnet_pre_norm: bool = True,
|
320 |
+
add_attention: bool = True,
|
321 |
+
attention_head_dim=1,
|
322 |
+
output_scale_factor=1.0,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
326 |
+
self.add_attention = add_attention
|
327 |
+
|
328 |
+
# there is always at least one resnet
|
329 |
+
resnets = [
|
330 |
+
ResnetBlock2D(
|
331 |
+
in_channels=in_channels,
|
332 |
+
out_channels=in_channels,
|
333 |
+
temb_channels=temb_channels,
|
334 |
+
eps=resnet_eps,
|
335 |
+
groups=resnet_groups,
|
336 |
+
dropout=dropout,
|
337 |
+
time_embedding_norm=resnet_time_scale_shift,
|
338 |
+
non_linearity=resnet_act_fn,
|
339 |
+
output_scale_factor=output_scale_factor,
|
340 |
+
pre_norm=resnet_pre_norm,
|
341 |
+
)
|
342 |
+
]
|
343 |
+
temp_convs = [
|
344 |
+
TemporalConvBlock(
|
345 |
+
in_channels,
|
346 |
+
in_channels,
|
347 |
+
dropout=0.1,
|
348 |
+
)
|
349 |
+
]
|
350 |
+
attentions = []
|
351 |
+
|
352 |
+
if attention_head_dim is None:
|
353 |
+
attention_head_dim = in_channels
|
354 |
+
|
355 |
+
for _ in range(num_layers):
|
356 |
+
if self.add_attention:
|
357 |
+
attentions.append(
|
358 |
+
Attention(
|
359 |
+
in_channels,
|
360 |
+
heads=in_channels // attention_head_dim,
|
361 |
+
dim_head=attention_head_dim,
|
362 |
+
rescale_output_factor=output_scale_factor,
|
363 |
+
eps=resnet_eps,
|
364 |
+
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
|
365 |
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
366 |
+
residual_connection=True,
|
367 |
+
bias=True,
|
368 |
+
upcast_softmax=True,
|
369 |
+
_from_deprecated_attn_block=True,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
attentions.append(None)
|
374 |
+
|
375 |
+
resnets.append(
|
376 |
+
ResnetBlock2D(
|
377 |
+
in_channels=in_channels,
|
378 |
+
out_channels=in_channels,
|
379 |
+
temb_channels=temb_channels,
|
380 |
+
eps=resnet_eps,
|
381 |
+
groups=resnet_groups,
|
382 |
+
dropout=dropout,
|
383 |
+
time_embedding_norm=resnet_time_scale_shift,
|
384 |
+
non_linearity=resnet_act_fn,
|
385 |
+
output_scale_factor=output_scale_factor,
|
386 |
+
pre_norm=resnet_pre_norm,
|
387 |
+
)
|
388 |
+
)
|
389 |
+
|
390 |
+
temp_convs.append(
|
391 |
+
TemporalConvBlock(
|
392 |
+
in_channels,
|
393 |
+
in_channels,
|
394 |
+
dropout=0.1,
|
395 |
+
)
|
396 |
+
)
|
397 |
+
|
398 |
+
self.resnets = nn.ModuleList(resnets)
|
399 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
400 |
+
self.attentions = nn.ModuleList(attentions)
|
401 |
+
|
402 |
+
def _set_partial_grad(self):
|
403 |
+
for temp_conv in self.temp_convs:
|
404 |
+
temp_conv.requires_grad_(True)
|
405 |
+
|
406 |
+
def forward(
|
407 |
+
self,
|
408 |
+
hidden_states,
|
409 |
+
):
|
410 |
+
bz = hidden_states.shape[0]
|
411 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
412 |
+
|
413 |
+
hidden_states = self.resnets[0](hidden_states, temb=None)
|
414 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
415 |
+
hidden_states = self.temp_convs[0](hidden_states)
|
416 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
417 |
+
|
418 |
+
for attn, resnet, temp_conv in zip(
|
419 |
+
self.attentions, self.resnets[1:], self.temp_convs[1:]
|
420 |
+
):
|
421 |
+
hidden_states = attn(hidden_states)
|
422 |
+
hidden_states = resnet(hidden_states, temb=None)
|
423 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
424 |
+
hidden_states = temp_conv(hidden_states)
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
|
428 |
+
class Encoder3D(nn.Module):
|
429 |
+
def __init__(
|
430 |
+
self,
|
431 |
+
in_channels=3,
|
432 |
+
out_channels=3,
|
433 |
+
num_blocks=4,
|
434 |
+
blocks_temp_li=[False, False, False, False],
|
435 |
+
block_out_channels=(64,),
|
436 |
+
layers_per_block=2,
|
437 |
+
norm_num_groups=32,
|
438 |
+
act_fn="silu",
|
439 |
+
double_z=True,
|
440 |
+
):
|
441 |
+
super().__init__()
|
442 |
+
self.layers_per_block = layers_per_block
|
443 |
+
self.blocks_temp_li = blocks_temp_li
|
444 |
+
|
445 |
+
self.conv_in = nn.Conv2d(
|
446 |
+
in_channels,
|
447 |
+
block_out_channels[0],
|
448 |
+
kernel_size=3,
|
449 |
+
stride=1,
|
450 |
+
padding=1,
|
451 |
+
)
|
452 |
+
|
453 |
+
self.temp_conv_in = nn.Conv3d(
|
454 |
+
block_out_channels[0],
|
455 |
+
block_out_channels[0],
|
456 |
+
(3,1,1),
|
457 |
+
padding = (1, 0, 0)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.mid_block = None
|
461 |
+
self.down_blocks = nn.ModuleList([])
|
462 |
+
|
463 |
+
# down
|
464 |
+
output_channel = block_out_channels[0]
|
465 |
+
for i in range(num_blocks):
|
466 |
+
input_channel = output_channel
|
467 |
+
output_channel = block_out_channels[i]
|
468 |
+
is_final_block = i == len(block_out_channels) - 1
|
469 |
+
|
470 |
+
down_block = DownEncoderBlock3D(
|
471 |
+
num_layers=self.layers_per_block,
|
472 |
+
in_channels=input_channel,
|
473 |
+
out_channels=output_channel,
|
474 |
+
add_downsample=not is_final_block,
|
475 |
+
add_temp_downsample=blocks_temp_li[i],
|
476 |
+
resnet_eps=1e-6,
|
477 |
+
downsample_padding=0,
|
478 |
+
resnet_act_fn=act_fn,
|
479 |
+
resnet_groups=norm_num_groups,
|
480 |
+
)
|
481 |
+
self.down_blocks.append(down_block)
|
482 |
+
|
483 |
+
# mid
|
484 |
+
self.mid_block = UNetMidBlock3DConv(
|
485 |
+
in_channels=block_out_channels[-1],
|
486 |
+
resnet_eps=1e-6,
|
487 |
+
resnet_act_fn=act_fn,
|
488 |
+
output_scale_factor=1,
|
489 |
+
resnet_time_scale_shift="default",
|
490 |
+
attention_head_dim=block_out_channels[-1],
|
491 |
+
resnet_groups=norm_num_groups,
|
492 |
+
temb_channels=None,
|
493 |
+
)
|
494 |
+
|
495 |
+
# out
|
496 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
497 |
+
self.conv_act = nn.SiLU()
|
498 |
+
|
499 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
500 |
+
|
501 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))
|
502 |
+
|
503 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
504 |
+
|
505 |
+
nn.init.zeros_(self.temp_conv_in.weight)
|
506 |
+
nn.init.zeros_(self.temp_conv_in.bias)
|
507 |
+
nn.init.zeros_(self.temp_conv_out.weight)
|
508 |
+
nn.init.zeros_(self.temp_conv_out.bias)
|
509 |
+
|
510 |
+
self.gradient_checkpointing = False
|
511 |
+
|
512 |
+
def forward(self, x):
|
513 |
+
'''
|
514 |
+
x: [b, c, (tb f), h, w]
|
515 |
+
'''
|
516 |
+
bz = x.shape[0]
|
517 |
+
sample = rearrange(x, 'b c n h w -> (b n) c h w')
|
518 |
+
sample = self.conv_in(sample)
|
519 |
+
|
520 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
521 |
+
temp_sample = sample
|
522 |
+
sample = self.temp_conv_in(sample)
|
523 |
+
sample = sample+temp_sample
|
524 |
+
# down
|
525 |
+
for b_id, down_block in enumerate(self.down_blocks):
|
526 |
+
sample = down_block(sample)
|
527 |
+
# middle
|
528 |
+
sample = self.mid_block(sample)
|
529 |
+
|
530 |
+
# post-process
|
531 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
532 |
+
sample = self.conv_norm_out(sample)
|
533 |
+
sample = self.conv_act(sample)
|
534 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
535 |
+
|
536 |
+
temp_sample = sample
|
537 |
+
sample = self.temp_conv_out(sample)
|
538 |
+
sample = sample+temp_sample
|
539 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
540 |
+
|
541 |
+
sample = self.conv_out(sample)
|
542 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
543 |
+
return sample
|
544 |
+
|
545 |
+
class Decoder3D(nn.Module):
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
in_channels=4,
|
549 |
+
out_channels=3,
|
550 |
+
num_blocks=4,
|
551 |
+
blocks_temp_li=[False, False, False, False],
|
552 |
+
block_out_channels=(64,),
|
553 |
+
layers_per_block=2,
|
554 |
+
norm_num_groups=32,
|
555 |
+
act_fn="silu",
|
556 |
+
norm_type="group", # group, spatial
|
557 |
+
):
|
558 |
+
super().__init__()
|
559 |
+
self.layers_per_block = layers_per_block
|
560 |
+
self.blocks_temp_li = blocks_temp_li
|
561 |
+
|
562 |
+
self.conv_in = nn.Conv2d(
|
563 |
+
in_channels,
|
564 |
+
block_out_channels[-1],
|
565 |
+
kernel_size=3,
|
566 |
+
stride=1,
|
567 |
+
padding=1,
|
568 |
+
)
|
569 |
+
|
570 |
+
self.temp_conv_in = nn.Conv3d(
|
571 |
+
block_out_channels[-1],
|
572 |
+
block_out_channels[-1],
|
573 |
+
(3,1,1),
|
574 |
+
padding = (1, 0, 0)
|
575 |
+
)
|
576 |
+
|
577 |
+
self.mid_block = None
|
578 |
+
self.up_blocks = nn.ModuleList([])
|
579 |
+
|
580 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
581 |
+
|
582 |
+
# mid
|
583 |
+
self.mid_block = UNetMidBlock3DConv(
|
584 |
+
in_channels=block_out_channels[-1],
|
585 |
+
resnet_eps=1e-6,
|
586 |
+
resnet_act_fn=act_fn,
|
587 |
+
output_scale_factor=1,
|
588 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
589 |
+
attention_head_dim=block_out_channels[-1],
|
590 |
+
resnet_groups=norm_num_groups,
|
591 |
+
temb_channels=temb_channels,
|
592 |
+
)
|
593 |
+
|
594 |
+
# up
|
595 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
596 |
+
output_channel = reversed_block_out_channels[0]
|
597 |
+
for i in range(num_blocks):
|
598 |
+
prev_output_channel = output_channel
|
599 |
+
output_channel = reversed_block_out_channels[i]
|
600 |
+
|
601 |
+
is_final_block = i == len(block_out_channels) - 1
|
602 |
+
|
603 |
+
up_block = UpDecoderBlock3D(
|
604 |
+
num_layers=self.layers_per_block + 1,
|
605 |
+
in_channels=prev_output_channel,
|
606 |
+
out_channels=output_channel,
|
607 |
+
add_upsample=not is_final_block,
|
608 |
+
add_temp_upsample=blocks_temp_li[i],
|
609 |
+
resnet_eps=1e-6,
|
610 |
+
resnet_act_fn=act_fn,
|
611 |
+
resnet_groups=norm_num_groups,
|
612 |
+
temb_channels=temb_channels,
|
613 |
+
resnet_time_scale_shift=norm_type,
|
614 |
+
)
|
615 |
+
self.up_blocks.append(up_block)
|
616 |
+
prev_output_channel = output_channel
|
617 |
+
|
618 |
+
# out
|
619 |
+
if norm_type == "spatial":
|
620 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
621 |
+
else:
|
622 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
623 |
+
self.conv_act = nn.SiLU()
|
624 |
+
|
625 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
|
626 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
627 |
+
|
628 |
+
nn.init.zeros_(self.temp_conv_in.weight)
|
629 |
+
nn.init.zeros_(self.temp_conv_in.bias)
|
630 |
+
nn.init.zeros_(self.temp_conv_out.weight)
|
631 |
+
nn.init.zeros_(self.temp_conv_out.bias)
|
632 |
+
|
633 |
+
self.gradient_checkpointing = False
|
634 |
+
|
635 |
+
def forward(self, z):
|
636 |
+
bz = z.shape[0]
|
637 |
+
sample = rearrange(z, 'b c n h w -> (b n) c h w')
|
638 |
+
sample = self.conv_in(sample)
|
639 |
+
|
640 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
641 |
+
temp_sample = sample
|
642 |
+
sample = self.temp_conv_in(sample)
|
643 |
+
sample = sample+temp_sample
|
644 |
+
|
645 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
646 |
+
# middle
|
647 |
+
sample = self.mid_block(sample)
|
648 |
+
sample = sample.to(upscale_dtype)
|
649 |
+
|
650 |
+
# up
|
651 |
+
for b_id, up_block in enumerate(self.up_blocks):
|
652 |
+
sample = up_block(sample)
|
653 |
+
|
654 |
+
# post-process
|
655 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
656 |
+
sample = self.conv_norm_out(sample)
|
657 |
+
sample = self.conv_act(sample)
|
658 |
+
|
659 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
660 |
+
temp_sample = sample
|
661 |
+
sample = self.temp_conv_out(sample)
|
662 |
+
sample = sample+temp_sample
|
663 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
664 |
+
|
665 |
+
sample = self.conv_out(sample)
|
666 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
667 |
+
return sample
|
668 |
+
|
669 |
+
|
670 |
+
|
671 |
+
class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
|
672 |
+
r"""
|
673 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
674 |
+
|
675 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
676 |
+
for all models (such as downloading or saving).
|
677 |
+
|
678 |
+
Parameters:
|
679 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
680 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
681 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
682 |
+
Tuple of downsample block types.
|
683 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
684 |
+
Tuple of upsample block types.
|
685 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
686 |
+
Tuple of block output channels.
|
687 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
688 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
689 |
+
sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
|
690 |
+
tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
|
691 |
+
chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
|
692 |
+
t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
|
693 |
+
scaling_factor (`float`, *optional*, defaults to 0.13235):
|
694 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
695 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
696 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
697 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
698 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
699 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
700 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
701 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
702 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
703 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
704 |
+
blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
|
705 |
+
blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
|
706 |
+
load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
|
707 |
+
"""
|
708 |
+
|
709 |
+
_supports_gradient_checkpointing = True
|
710 |
+
|
711 |
+
@register_to_config
|
712 |
+
def __init__(
|
713 |
+
self,
|
714 |
+
in_channels: int = 3,
|
715 |
+
out_channels: int = 3,
|
716 |
+
down_block_num: int = 4,
|
717 |
+
up_block_num: int = 4,
|
718 |
+
block_out_channels: Tuple[int] = (128,256,512,512),
|
719 |
+
layers_per_block: int = 2,
|
720 |
+
act_fn: str = "silu",
|
721 |
+
latent_channels: int = 4,
|
722 |
+
norm_num_groups: int = 32,
|
723 |
+
sample_size: int = 320,
|
724 |
+
tile_overlap: tuple = (120, 80),
|
725 |
+
force_upcast: bool = True,
|
726 |
+
chunk_len: int = 24,
|
727 |
+
t_over: int = 8,
|
728 |
+
scale_factor: float = 0.13235,
|
729 |
+
blocks_tempdown_li=[True, True, False, False],
|
730 |
+
blocks_tempup_li=[False, True, True, False],
|
731 |
+
load_mode = 'full',
|
732 |
+
):
|
733 |
+
super().__init__()
|
734 |
+
|
735 |
+
self.blocks_tempdown_li = blocks_tempdown_li
|
736 |
+
self.blocks_tempup_li = blocks_tempup_li
|
737 |
+
# pass init params to Encoder
|
738 |
+
self.load_mode = load_mode
|
739 |
+
if load_mode in ['full', 'encoder_only']:
|
740 |
+
self.encoder = Encoder3D(
|
741 |
+
in_channels=in_channels,
|
742 |
+
out_channels=latent_channels,
|
743 |
+
num_blocks=down_block_num,
|
744 |
+
blocks_temp_li=blocks_tempdown_li,
|
745 |
+
block_out_channels=block_out_channels,
|
746 |
+
layers_per_block=layers_per_block,
|
747 |
+
act_fn=act_fn,
|
748 |
+
norm_num_groups=norm_num_groups,
|
749 |
+
double_z=True,
|
750 |
+
)
|
751 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
752 |
+
|
753 |
+
if load_mode in ['full', 'decoder_only']:
|
754 |
+
# pass init params to Decoder
|
755 |
+
self.decoder = Decoder3D(
|
756 |
+
in_channels=latent_channels,
|
757 |
+
out_channels=out_channels,
|
758 |
+
num_blocks=up_block_num,
|
759 |
+
blocks_temp_li=blocks_tempup_li,
|
760 |
+
block_out_channels=block_out_channels,
|
761 |
+
layers_per_block=layers_per_block,
|
762 |
+
norm_num_groups=norm_num_groups,
|
763 |
+
act_fn=act_fn,
|
764 |
+
)
|
765 |
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
766 |
+
|
767 |
+
|
768 |
+
# only relevant if vae tiling is enabled
|
769 |
+
sample_size = (
|
770 |
+
sample_size[0]
|
771 |
+
if isinstance(sample_size, (list, tuple))
|
772 |
+
else sample_size
|
773 |
+
)
|
774 |
+
self.tile_overlap = tile_overlap
|
775 |
+
self.vae_scale_factor=[4, 8, 8]
|
776 |
+
self.scale_factor = scale_factor
|
777 |
+
self.sample_size = sample_size
|
778 |
+
self.chunk_len = chunk_len
|
779 |
+
self.t_over = t_over
|
780 |
+
|
781 |
+
self.latent_chunk_len = self.chunk_len//4
|
782 |
+
self.latent_t_over = self.t_over//4
|
783 |
+
self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
|
784 |
+
self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192)
|
785 |
+
|
786 |
+
|
787 |
+
def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
788 |
+
KERNEL = self.kernel
|
789 |
+
STRIDE = self.stride
|
790 |
+
LOCAL_BS = local_batch_size
|
791 |
+
OUT_C = 8
|
792 |
+
|
793 |
+
B, C, N, H, W = input_imgs.shape
|
794 |
+
|
795 |
+
|
796 |
+
out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
|
797 |
+
out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
|
798 |
+
out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
|
799 |
+
|
800 |
+
## cut video into overlapped small cubes and batch forward
|
801 |
+
num = 0
|
802 |
+
|
803 |
+
out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
804 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
805 |
+
|
806 |
+
for i in range(out_n):
|
807 |
+
for j in range(out_h):
|
808 |
+
for k in range(out_w):
|
809 |
+
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
810 |
+
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
811 |
+
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
812 |
+
video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
813 |
+
vae_batch_input[num%LOCAL_BS] = video_cube
|
814 |
+
|
815 |
+
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
816 |
+
latent = self.encoder(vae_batch_input)
|
817 |
+
|
818 |
+
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
819 |
+
out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
820 |
+
else:
|
821 |
+
out_latent[num-LOCAL_BS+1:num+1] = latent
|
822 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
823 |
+
num+=1
|
824 |
+
|
825 |
+
## flatten the batched out latent to videos and supress the overlapped parts
|
826 |
+
B, C, N, H, W = input_imgs.shape
|
827 |
+
|
828 |
+
out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
829 |
+
OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
830 |
+
OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
831 |
+
OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
|
832 |
+
|
833 |
+
for i in range(out_n):
|
834 |
+
n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
|
835 |
+
for j in range(out_h):
|
836 |
+
h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
|
837 |
+
for k in range(out_w):
|
838 |
+
w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
|
839 |
+
latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
840 |
+
out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
|
841 |
+
|
842 |
+
## final conv
|
843 |
+
out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
|
844 |
+
out_video_cube = self.quant_conv(out_video_cube)
|
845 |
+
out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)
|
846 |
+
|
847 |
+
posterior = DiagonalGaussianDistribution(out_video_cube)
|
848 |
+
|
849 |
+
if not return_dict:
|
850 |
+
return (posterior,)
|
851 |
+
|
852 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
853 |
+
|
854 |
+
|
855 |
+
def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
|
856 |
+
KERNEL = self.kernel
|
857 |
+
STRIDE = self.stride
|
858 |
+
|
859 |
+
LOCAL_BS = local_batch_size
|
860 |
+
OUT_C = 3
|
861 |
+
IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
862 |
+
IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
863 |
+
|
864 |
+
B, C, N, H, W = input_latents.shape
|
865 |
+
|
866 |
+
## post quant conv (a mapping)
|
867 |
+
input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
|
868 |
+
input_latents = self.post_quant_conv(input_latents)
|
869 |
+
input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
|
870 |
+
|
871 |
+
## out tensor shape
|
872 |
+
out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
|
873 |
+
out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
|
874 |
+
out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1
|
875 |
+
|
876 |
+
## cut latent into overlapped small cubes and batch forward
|
877 |
+
num = 0
|
878 |
+
decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
879 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
880 |
+
for i in range(out_n):
|
881 |
+
for j in range(out_h):
|
882 |
+
for k in range(out_w):
|
883 |
+
n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
|
884 |
+
h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
|
885 |
+
w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
|
886 |
+
latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
887 |
+
vae_batch_input[num%LOCAL_BS] = latent_cube
|
888 |
+
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
889 |
+
|
890 |
+
latent = self.decoder(vae_batch_input)
|
891 |
+
|
892 |
+
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
893 |
+
decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
894 |
+
else:
|
895 |
+
decoded_cube[num-LOCAL_BS+1:num+1] = latent
|
896 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
897 |
+
num+=1
|
898 |
+
B, C, N, H, W = input_latents.shape
|
899 |
+
|
900 |
+
out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
|
901 |
+
OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
|
902 |
+
for i in range(out_n):
|
903 |
+
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
904 |
+
for j in range(out_h):
|
905 |
+
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
906 |
+
for k in range(out_w):
|
907 |
+
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
908 |
+
out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
909 |
+
out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
|
910 |
+
|
911 |
+
out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()
|
912 |
+
|
913 |
+
decoded = out_video
|
914 |
+
if not return_dict:
|
915 |
+
return (decoded,)
|
916 |
+
|
917 |
+
return DecoderOutput(sample=decoded)
|
918 |
+
|
919 |
+
def forward(
|
920 |
+
self,
|
921 |
+
sample: torch.Tensor,
|
922 |
+
sample_posterior: bool = False,
|
923 |
+
return_dict: bool = True,
|
924 |
+
generator: Optional[torch.Generator] = None,
|
925 |
+
encoder_local_batch_size: int = 2,
|
926 |
+
decoder_local_batch_size: int = 2,
|
927 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
928 |
+
r"""
|
929 |
+
Args:
|
930 |
+
sample (`torch.Tensor`): Input sample.
|
931 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
932 |
+
Whether to sample from the posterior.
|
933 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
934 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
935 |
+
generator (`torch.Generator`, *optional*):
|
936 |
+
PyTorch random number generator.
|
937 |
+
encoder_local_batch_size (`int`, *optional*, defaults to 2):
|
938 |
+
Local batch size for the encoder's batch inference.
|
939 |
+
decoder_local_batch_size (`int`, *optional*, defaults to 2):
|
940 |
+
Local batch size for the decoder's batch inference.
|
941 |
+
"""
|
942 |
+
x = sample
|
943 |
+
posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
|
944 |
+
if sample_posterior:
|
945 |
+
z = posterior.sample(generator=generator)
|
946 |
+
else:
|
947 |
+
z = posterior.mode()
|
948 |
+
dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample
|
949 |
+
|
950 |
+
if not return_dict:
|
951 |
+
return (dec,)
|
952 |
+
|
953 |
+
return DecoderOutput(sample=dec)
|
954 |
+
|
955 |
+
@classmethod
|
956 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
957 |
+
kwargs["torch_type"] = torch.float32
|
958 |
+
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
959 |
+
|
960 |
+
|
961 |
+
def prepare_for_blend(n_param, h_param, w_param, x):
|
962 |
+
n, n_max, overlap_n = n_param
|
963 |
+
h, h_max, overlap_h = h_param
|
964 |
+
w, w_max, overlap_w = w_param
|
965 |
+
if overlap_n > 0:
|
966 |
+
if n > 0: # the head overlap part decays from 0 to 1
|
967 |
+
x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
968 |
+
if n < n_max-1: # the tail overlap part decays from 1 to 0
|
969 |
+
x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
970 |
+
if h > 0:
|
971 |
+
x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
972 |
+
if h < h_max-1:
|
973 |
+
x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
974 |
+
if w > 0:
|
975 |
+
x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
976 |
+
if w < w_max-1:
|
977 |
+
x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
978 |
+
return x
|