File size: 1,814 Bytes
118976d
7a71608
 
118976d
 
 
 
 
 
 
 
 
 
 
 
7a71608
118976d
7a71608
118976d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a71608
118976d
 
 
 
 
7a71608
 
 
 
 
 
 
 
 
 
118976d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
model-index:
- name: finetune-BERT-squad
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune-BERT-squad

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0687

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.4612        | 0.19  | 1000  | 1.3505          |
| 1.2999        | 0.37  | 2000  | 1.2518          |
| 1.2234        | 0.56  | 3000  | 1.1492          |
| 1.1824        | 0.74  | 4000  | 1.1181          |
| 1.1169        | 0.93  | 5000  | 1.0850          |
| 0.8933        | 1.11  | 6000  | 1.0925          |
| 0.9004        | 1.3   | 7000  | 1.0849          |
| 0.8706        | 1.49  | 8000  | 1.0976          |
| 0.8617        | 1.67  | 9000  | 1.0779          |
| 0.8756        | 1.86  | 10000 | 1.0687          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2