Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.65 +/- 21.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aecfc0c9090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aecfc0c9120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aecfc0c91b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aecfc0c9240>", "_build": "<function ActorCriticPolicy._build at 0x7aecfc0c92d0>", "forward": "<function ActorCriticPolicy.forward at 0x7aecfc0c9360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aecfc0c93f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aecfc0c9480>", "_predict": "<function ActorCriticPolicy._predict at 0x7aecfc0c9510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aecfc0c95a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aecfc0c9630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aecfc0c96c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aecfc068380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729000088055198303, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJroID2un/66myXZuyftjjwH6Wg8hrd2vQAAgD8AAIA/IAURPotBYT96lEE+ZUbDvj8+Pj50XbA8AAAAAAAAAAAADNE7yR0BPdKlkT2iXES+odgoPQrT5LkAAAAAAAAAANPLlr4IUYI/eOzavDbg1b7jVpm+7QWSPQAAAAAAAAAAZiBevI/uFbrD9es6mkw6NVPz/7kX8Qe6AACAPwAAgD9mI+08uGGNuwlRF7wzgqU8GA+2vPJhjD0AAIA/AACAP1p47L2eZD4/DpPovK5Epr7tTM+9Fe4aPQAAAAAAAAAAADgRPCkID7pWym+0wK4bsASRpDrNEZUzAACAPwAAgD8aVwy9hByCPX2sHb0Ukgu+dXfMOx8XCj0AAAAAAAAAAHCNXr6ybTM/09oxvd+nrr4N0Gq+c/UWPQAAAAAAAAAAzV8WvTnvCj8eASk9PVtavpzw67xNw6w8AAAAAAAAAABmK2K9GddWPkkFsj0DLwC+Up6kPd7LyD0AAAAAAAAAAEAONj5ar3M+e/2svfytrL7tbEc9Pp+1vQAAAAAAAAAAzUxxvEq5mD9+f4Q8KQvIvsIbpb2qm7s8AAAAAAAAAADTRF4+HEIhP+4khTypR8e+mUQSPoolX70AAAAAAAAAAJqHpr04KMw+oDuKPuc3gb7owrE9fXy3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAIqeK8+RqMAWyUTQoBjAF0lEdAkTisYuTRpnV9lChoBkdAcgm9tMwlB2gHS/ZoCEdAkTjSUX531XV9lChoBkdAbc75bhWHUWgHTQEBaAhHQJE5I5WBBiV1fZQoaAZHQHCHA3o9s8BoB00CAWgIR0CROSj8UEgXdX2UKGgGR0BwcgZdfLLZaAdNDQFoCEdAkTmBLwnYx3V9lChoBkdAcwOQcPvrnmgHTQ4BaAhHQJE6OmwaBI51fZQoaAZHQHOYqMm4RVZoB0v7aAhHQJE6clKK5091fZQoaAZHQHGitKVY6n1oB00dAWgIR0CROvl8w5/9dX2UKGgGR0BxJ32f029+aAdNFwFoCEdAkTuky57PZHV9lChoBkdAcjqx2St/4WgHS/1oCEdAkTvOxwAEMnV9lChoBkdAcIGsA/9pAWgHTR4BaAhHQJE75pEhJRR1fZQoaAZHQHHUDmwJPZZoB00lAWgIR0CRPHWhysCDdX2UKGgGR0BzvSvdM0xeaAdL9mgIR0CRPVyRSxZ/dX2UKGgGR0BwuH9CNS62aAdNIQFoCEdAkT34smOU+3V9lChoBkdAcPChDgIhQmgHTR0BaAhHQJE+4kona391fZQoaAZHQHAViM5wOvtoB0vxaAhHQJE/Fn3+MqB1fZQoaAZHQHCC2C/XXiBoB00TAWgIR0CRP0dWQwK0dX2UKGgGR0BwxnHYHxBmaAdNFwFoCEdAkUCGCVbA13V9lChoBkdAcTiwH7gsLGgHTR0BaAhHQJFAr4VRDTl1fZQoaAZHQHG6+MQ2/BZoB00zAWgIR0CRQNokiUxEdX2UKGgGR0Bv4g4sEq2CaAdNJAFoCEdAkUFNZaFEiXV9lChoBkdAcBjfP5YYBWgHTScBaAhHQJFCf3dsSCh1fZQoaAZHQHAgE1l5GBpoB00TAWgIR0CRQ3My8BdVdX2UKGgGR0BxBgBeXzDoaAdNGQFoCEdAkUNzINmUW3V9lChoBkdAcJ4PHktEomgHTTYBaAhHQJFDmQGOdXl1fZQoaAZHQHArzVYp2EFoB01VAWgIR0CRQ66YVqN7dX2UKGgGR0BvgOgYgq3FaAdNJAFoCEdAkUP56dDpknV9lChoBkdAceoRjz7MxGgHTRYBaAhHQJFFIU0vXbx1fZQoaAZHQHJMKv3ai9JoB01AAWgIR0CRRTyYoiLVdX2UKGgGR0BwjbOjZcs2aAdL72gIR0CRRZRAKOT8dX2UKGgGR0BxSB71Iy0saAdNRgFoCEdAkUcH7xd6cHV9lChoBkdAce7VWS2Yv2gHTSoBaAhHQJFHok9lmOF1fZQoaAZHQHELg57w8W9oB0v/aAhHQJFH+EXcgyN1fZQoaAZHQHCTWbPQfIVoB01LAWgIR0CRSG1Gsmv4dX2UKGgGR0BVz5kf9xZMaAdLyWgIR0CRSOswco6TdX2UKGgGR0By0r+dbxEwaAdNLwFoCEdAkUkZQ1rIo3V9lChoBkdAcNDUd7v5QGgHTUEBaAhHQJFJwPpY9xJ1fZQoaAZHQHJ8/4AS39doB00+AWgIR0CRSkVRDTjOdX2UKGgGR0BsSdWOp84QaAdNGAFoCEdAkUtnOObRW3V9lChoBkdAcS02MKkVOGgHTSEBaAhHQJFLcHVwxWV1fZQoaAZHQHM8VlCkXUJoB01AAWgIR0CRS3fHggoxdX2UKGgGR0BxCsC7sfJWaAdNMQFoCEdAkUv5+tr9EXV9lChoBkdAbiunDziCKGgHTQABaAhHQJFMW7xusLh1fZQoaAZHQHK3LN8ma6VoB01AAWgIR0CRTNZ0jkdWdX2UKGgGR0BvOWfXf642aAdNIgFoCEdAkU1lDrqt5nV9lChoBkdAcCm6pYLb6GgHTTkBaAhHQJFOY/8l5W11fZQoaAZHQGvdlS88La5oB00XAWgIR0CRYlNCZ4OddX2UKGgGR0Bwc0j/uLJkaAdL/GgIR0CRYnFkhA4XdX2UKGgGR0BuUMbaRISUaAdNMwFoCEdAkWOw8jiXIHV9lChoBkdAbUnQOWjXWmgHTQ0BaAhHQJFjznNgSe11fZQoaAZHQHJ1I2CNCJJoB00sAWgIR0CRZDlpXZGsdX2UKGgGR0Bvt4t+TeO5aAdNFgFoCEdAkWQ44lyBCnV9lChoBkdAcBbpn6Eal2gHTTABaAhHQJFmKn+AEuB1fZQoaAZHQG2Ls3AEdNpoB00VAWgIR0CRZpfeUILPdX2UKGgGR0BwhQlAu7HyaAdNEQFoCEdAkWca3NLUTnV9lChoBkdAcidq59Vmz2gHTSkBaAhHQJFnLBj4Hop1fZQoaAZHQG0+6K+BYmtoB01JAWgIR0CRaCohIOH4dX2UKGgGR0ByxRj+aScLaAdNGQFoCEdAkWg/ReC04XV9lChoBkdAcJ+bDMvAXWgHTTUBaAhHQJFpsbcXWOJ1fZQoaAZHQHLhRqj8DSxoB00cAWgIR0CRaghaTwDvdX2UKGgGR0BuR5I6Kcd6aAdNEwFoCEdAkWpVPWQOnXV9lChoBkdAcM6y0a6z3WgHS/BoCEdAkWrV2icoY3V9lChoBkdAci0bYbsF+2gHTQUBaAhHQJFrUlb/wRZ1fZQoaAZHQHCjJElVtGdoB01VAWgIR0CRbGZs9B8hdX2UKGgGR0BuQvK8tf5UaAdNMQFoCEdAkW04geRxLnV9lChoBkdAcA/S0BwMpmgHTU4BaAhHQJFuHPfKp1l1fZQoaAZHQHMehoEjgQ9oB00JAmgIR0CRbuO8CgbqdX2UKGgGR0Bvpm8RL9MsaAdNFgFoCEdAkW9shC+lCXV9lChoBkdAcqKOTq0MPWgHTUgBaAhHQJFv8iA2AG11fZQoaAZHQHEtHuRcNYtoB00cAWgIR0CRcLOuaF23dX2UKGgGR0BxCyGJvYOEaAdNWAFoCEdAkXDUy+HrQnV9lChoBkdAcfEx7iQ1aWgHTSgBaAhHQJFw+Km8/Ux1fZQoaAZHQHIPV+y7f51oB0v6aAhHQJFxIfuCwr11fZQoaAZHQHIap+DvmYBoB01VAWgIR0CRcTPY4ACGdX2UKGgGR0BwZ1iCrcTKaAdNHQFoCEdAkXJiWzF+/nV9lChoBkdAcdu8cdYGMWgHTQUBaAhHQJFyeBFuvU11fZQoaAZHQHFJEgKWszVoB00fAWgIR0CRcq4ecQRPdX2UKGgGR0Bt+fBxgiNbaAdNKQFoCEdAkXPGOIZZS3V9lChoBkdAcsSeq7yxzWgHTRsBaAhHQJF0VzZHuqp1fZQoaAZHQHHPH+yZ8a5oB01HA2gIR0CRdPSNwR5DdX2UKGgGR0BxYC14Pf8/aAdL/2gIR0CRdROcDr7gdX2UKGgGR0Bxpx2HLzPKaAdNIAFoCEdAkXUuE7GNrHV9lChoBkdAcSZByjpLVWgHTQQBaAhHQJF14RK6Fuh1fZQoaAZHQG/3g8SwnploB00CAWgIR0CRdk+23KB/dX2UKGgGR0ByCamUGFBZaAdNNQFoCEdAkXgwdKdxyXV9lChoBkdAcIrKcd5prWgHTR4BaAhHQJF4R0hePaN1fZQoaAZHQHCH4WxhUipoB00TAWgIR0CReGaHbh3rdX2UKGgGR0BxVm2tuDSPaAdNJwFoCEdAkXjFLamGd3V9lChoBkdAb7vcry1/lWgHTS0BaAhHQJF4zNjbzsh1fZQoaAZHQHC3vNJOFg5oB00CAWgIR0CReT4PwuuidX2UKGgGR0BxvGN4qwyJaAdNMwFoCEdAkXsFpoK2KHV9lChoBkdAcjNuVHFxXGgHTUoBaAhHQJF7XuQZGax1fZQoaAZHQHDAvDYRNAVoB015AWgIR0CRe3cSGrS3dX2UKGgGR0ByZ4Xdj5KwaAdNIgFoCEdAkXvTe9Ba93V9lChoBkdAczSYsNDtxGgHTS4BaAhHQJF8xhoduHh1fZQoaAZHQHC7xZyMkyFoB00mAWgIR0CRfTgbZOBUdX2UKGgGR0Bt+j7bcoH+aAdNHgFoCEdAkX1AMMI/q3V9lChoBkdAc2CKmsNlRWgHS/VoCEdAkX1OcYqG13V9lChoBkdAcm/SV4X402gHTRYBaAhHQJF9wJrtVrB1fZQoaAZHQHIgnYtg8bJoB01JAWgIR0CRflFRYRukdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:251c163abfea5fa35c072609d73f7735f912728b4d9e6efeadda19c2dfdcea36
|
3 |
+
size 148068
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7aecfc0c9090>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aecfc0c9120>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aecfc0c91b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aecfc0c9240>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7aecfc0c92d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7aecfc0c9360>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7aecfc0c93f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aecfc0c9480>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7aecfc0c9510>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aecfc0c95a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aecfc0c9630>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7aecfc0c96c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7aecfc068380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1729000088055198303,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJroID2un/66myXZuyftjjwH6Wg8hrd2vQAAgD8AAIA/IAURPotBYT96lEE+ZUbDvj8+Pj50XbA8AAAAAAAAAAAADNE7yR0BPdKlkT2iXES+odgoPQrT5LkAAAAAAAAAANPLlr4IUYI/eOzavDbg1b7jVpm+7QWSPQAAAAAAAAAAZiBevI/uFbrD9es6mkw6NVPz/7kX8Qe6AACAPwAAgD9mI+08uGGNuwlRF7wzgqU8GA+2vPJhjD0AAIA/AACAP1p47L2eZD4/DpPovK5Epr7tTM+9Fe4aPQAAAAAAAAAAADgRPCkID7pWym+0wK4bsASRpDrNEZUzAACAPwAAgD8aVwy9hByCPX2sHb0Ukgu+dXfMOx8XCj0AAAAAAAAAAHCNXr6ybTM/09oxvd+nrr4N0Gq+c/UWPQAAAAAAAAAAzV8WvTnvCj8eASk9PVtavpzw67xNw6w8AAAAAAAAAABmK2K9GddWPkkFsj0DLwC+Up6kPd7LyD0AAAAAAAAAAEAONj5ar3M+e/2svfytrL7tbEc9Pp+1vQAAAAAAAAAAzUxxvEq5mD9+f4Q8KQvIvsIbpb2qm7s8AAAAAAAAAADTRF4+HEIhP+4khTypR8e+mUQSPoolX70AAAAAAAAAAJqHpr04KMw+oDuKPuc3gb7owrE9fXy3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAIqeK8+RqMAWyUTQoBjAF0lEdAkTisYuTRpnV9lChoBkdAcgm9tMwlB2gHS/ZoCEdAkTjSUX531XV9lChoBkdAbc75bhWHUWgHTQEBaAhHQJE5I5WBBiV1fZQoaAZHQHCHA3o9s8BoB00CAWgIR0CROSj8UEgXdX2UKGgGR0BwcgZdfLLZaAdNDQFoCEdAkTmBLwnYx3V9lChoBkdAcwOQcPvrnmgHTQ4BaAhHQJE6OmwaBI51fZQoaAZHQHOYqMm4RVZoB0v7aAhHQJE6clKK5091fZQoaAZHQHGitKVY6n1oB00dAWgIR0CROvl8w5/9dX2UKGgGR0BxJ32f029+aAdNFwFoCEdAkTuky57PZHV9lChoBkdAcjqx2St/4WgHS/1oCEdAkTvOxwAEMnV9lChoBkdAcIGsA/9pAWgHTR4BaAhHQJE75pEhJRR1fZQoaAZHQHHUDmwJPZZoB00lAWgIR0CRPHWhysCDdX2UKGgGR0BzvSvdM0xeaAdL9mgIR0CRPVyRSxZ/dX2UKGgGR0BwuH9CNS62aAdNIQFoCEdAkT34smOU+3V9lChoBkdAcPChDgIhQmgHTR0BaAhHQJE+4kona391fZQoaAZHQHAViM5wOvtoB0vxaAhHQJE/Fn3+MqB1fZQoaAZHQHCC2C/XXiBoB00TAWgIR0CRP0dWQwK0dX2UKGgGR0BwxnHYHxBmaAdNFwFoCEdAkUCGCVbA13V9lChoBkdAcTiwH7gsLGgHTR0BaAhHQJFAr4VRDTl1fZQoaAZHQHG6+MQ2/BZoB00zAWgIR0CRQNokiUxEdX2UKGgGR0Bv4g4sEq2CaAdNJAFoCEdAkUFNZaFEiXV9lChoBkdAcBjfP5YYBWgHTScBaAhHQJFCf3dsSCh1fZQoaAZHQHAgE1l5GBpoB00TAWgIR0CRQ3My8BdVdX2UKGgGR0BxBgBeXzDoaAdNGQFoCEdAkUNzINmUW3V9lChoBkdAcJ4PHktEomgHTTYBaAhHQJFDmQGOdXl1fZQoaAZHQHArzVYp2EFoB01VAWgIR0CRQ66YVqN7dX2UKGgGR0BvgOgYgq3FaAdNJAFoCEdAkUP56dDpknV9lChoBkdAceoRjz7MxGgHTRYBaAhHQJFFIU0vXbx1fZQoaAZHQHJMKv3ai9JoB01AAWgIR0CRRTyYoiLVdX2UKGgGR0BwjbOjZcs2aAdL72gIR0CRRZRAKOT8dX2UKGgGR0BxSB71Iy0saAdNRgFoCEdAkUcH7xd6cHV9lChoBkdAce7VWS2Yv2gHTSoBaAhHQJFHok9lmOF1fZQoaAZHQHELg57w8W9oB0v/aAhHQJFH+EXcgyN1fZQoaAZHQHCTWbPQfIVoB01LAWgIR0CRSG1Gsmv4dX2UKGgGR0BVz5kf9xZMaAdLyWgIR0CRSOswco6TdX2UKGgGR0By0r+dbxEwaAdNLwFoCEdAkUkZQ1rIo3V9lChoBkdAcNDUd7v5QGgHTUEBaAhHQJFJwPpY9xJ1fZQoaAZHQHJ8/4AS39doB00+AWgIR0CRSkVRDTjOdX2UKGgGR0BsSdWOp84QaAdNGAFoCEdAkUtnOObRW3V9lChoBkdAcS02MKkVOGgHTSEBaAhHQJFLcHVwxWV1fZQoaAZHQHM8VlCkXUJoB01AAWgIR0CRS3fHggoxdX2UKGgGR0BxCsC7sfJWaAdNMQFoCEdAkUv5+tr9EXV9lChoBkdAbiunDziCKGgHTQABaAhHQJFMW7xusLh1fZQoaAZHQHK3LN8ma6VoB01AAWgIR0CRTNZ0jkdWdX2UKGgGR0BvOWfXf642aAdNIgFoCEdAkU1lDrqt5nV9lChoBkdAcCm6pYLb6GgHTTkBaAhHQJFOY/8l5W11fZQoaAZHQGvdlS88La5oB00XAWgIR0CRYlNCZ4OddX2UKGgGR0Bwc0j/uLJkaAdL/GgIR0CRYnFkhA4XdX2UKGgGR0BuUMbaRISUaAdNMwFoCEdAkWOw8jiXIHV9lChoBkdAbUnQOWjXWmgHTQ0BaAhHQJFjznNgSe11fZQoaAZHQHJ1I2CNCJJoB00sAWgIR0CRZDlpXZGsdX2UKGgGR0Bvt4t+TeO5aAdNFgFoCEdAkWQ44lyBCnV9lChoBkdAcBbpn6Eal2gHTTABaAhHQJFmKn+AEuB1fZQoaAZHQG2Ls3AEdNpoB00VAWgIR0CRZpfeUILPdX2UKGgGR0BwhQlAu7HyaAdNEQFoCEdAkWca3NLUTnV9lChoBkdAcidq59Vmz2gHTSkBaAhHQJFnLBj4Hop1fZQoaAZHQG0+6K+BYmtoB01JAWgIR0CRaCohIOH4dX2UKGgGR0ByxRj+aScLaAdNGQFoCEdAkWg/ReC04XV9lChoBkdAcJ+bDMvAXWgHTTUBaAhHQJFpsbcXWOJ1fZQoaAZHQHLhRqj8DSxoB00cAWgIR0CRaghaTwDvdX2UKGgGR0BuR5I6Kcd6aAdNEwFoCEdAkWpVPWQOnXV9lChoBkdAcM6y0a6z3WgHS/BoCEdAkWrV2icoY3V9lChoBkdAci0bYbsF+2gHTQUBaAhHQJFrUlb/wRZ1fZQoaAZHQHCjJElVtGdoB01VAWgIR0CRbGZs9B8hdX2UKGgGR0BuQvK8tf5UaAdNMQFoCEdAkW04geRxLnV9lChoBkdAcA/S0BwMpmgHTU4BaAhHQJFuHPfKp1l1fZQoaAZHQHMehoEjgQ9oB00JAmgIR0CRbuO8CgbqdX2UKGgGR0Bvpm8RL9MsaAdNFgFoCEdAkW9shC+lCXV9lChoBkdAcqKOTq0MPWgHTUgBaAhHQJFv8iA2AG11fZQoaAZHQHEtHuRcNYtoB00cAWgIR0CRcLOuaF23dX2UKGgGR0BxCyGJvYOEaAdNWAFoCEdAkXDUy+HrQnV9lChoBkdAcfEx7iQ1aWgHTSgBaAhHQJFw+Km8/Ux1fZQoaAZHQHIPV+y7f51oB0v6aAhHQJFxIfuCwr11fZQoaAZHQHIap+DvmYBoB01VAWgIR0CRcTPY4ACGdX2UKGgGR0BwZ1iCrcTKaAdNHQFoCEdAkXJiWzF+/nV9lChoBkdAcdu8cdYGMWgHTQUBaAhHQJFyeBFuvU11fZQoaAZHQHFJEgKWszVoB00fAWgIR0CRcq4ecQRPdX2UKGgGR0Bt+fBxgiNbaAdNKQFoCEdAkXPGOIZZS3V9lChoBkdAcsSeq7yxzWgHTRsBaAhHQJF0VzZHuqp1fZQoaAZHQHHPH+yZ8a5oB01HA2gIR0CRdPSNwR5DdX2UKGgGR0BxYC14Pf8/aAdL/2gIR0CRdROcDr7gdX2UKGgGR0Bxpx2HLzPKaAdNIAFoCEdAkXUuE7GNrHV9lChoBkdAcSZByjpLVWgHTQQBaAhHQJF14RK6Fuh1fZQoaAZHQG/3g8SwnploB00CAWgIR0CRdk+23KB/dX2UKGgGR0ByCamUGFBZaAdNNQFoCEdAkXgwdKdxyXV9lChoBkdAcIrKcd5prWgHTR4BaAhHQJF4R0hePaN1fZQoaAZHQHCH4WxhUipoB00TAWgIR0CReGaHbh3rdX2UKGgGR0BxVm2tuDSPaAdNJwFoCEdAkXjFLamGd3V9lChoBkdAb7vcry1/lWgHTS0BaAhHQJF4zNjbzsh1fZQoaAZHQHC3vNJOFg5oB00CAWgIR0CReT4PwuuidX2UKGgGR0BxvGN4qwyJaAdNMwFoCEdAkXsFpoK2KHV9lChoBkdAcjNuVHFxXGgHTUoBaAhHQJF7XuQZGax1fZQoaAZHQHDAvDYRNAVoB015AWgIR0CRe3cSGrS3dX2UKGgGR0ByZ4Xdj5KwaAdNIgFoCEdAkXvTe9Ba93V9lChoBkdAczSYsNDtxGgHTS4BaAhHQJF8xhoduHh1fZQoaAZHQHC7xZyMkyFoB00mAWgIR0CRfTgbZOBUdX2UKGgGR0Bt+j7bcoH+aAdNHgFoCEdAkX1AMMI/q3V9lChoBkdAc2CKmsNlRWgHS/VoCEdAkX1OcYqG13V9lChoBkdAcm/SV4X402gHTRYBaAhHQJF9wJrtVrB1fZQoaAZHQHIgnYtg8bJoB01JAWgIR0CRflFRYRukdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9d6d3c667f3801854c26142d95495f370e4c2088a6d53cf644f82b2b8b3f541
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc52bf76f28f86f6b087a0c6e1b12a8ef389737cf1803b012f89c59b9e8f0f5e
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.6540640095473, "std_reward": 21.071178395853767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-15T14:08:09.190098"}
|