Rezaul Karim
commited on
Commit
•
39758da
1
Parent(s):
725078e
Update README.md
Browse files
README.md
CHANGED
@@ -14,18 +14,6 @@ https://huggingface.co/rezahf2024/fine_tuned_financial_setiment_analysis_gpt2_mo
|
|
14 |
|
15 |
This a fine-tuned GPT2 model on the https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train dataset for the down-stream financial sentiment analysis.
|
16 |
|
17 |
-
label_mapping = {
|
18 |
-
'LABEL_0': 'mildly positive',
|
19 |
-
'LABEL_1': 'mildly negative',
|
20 |
-
'LABEL_2': 'moderately negative',
|
21 |
-
'LABEL_3': 'moderately positive',
|
22 |
-
'LABEL_4': 'positive',
|
23 |
-
'LABEL_5': 'negative',
|
24 |
-
'LABEL_6': 'neutral',
|
25 |
-
'LABEL_7': 'strong negative',
|
26 |
-
'LABEL_8': 'strong positive'
|
27 |
-
}
|
28 |
-
|
29 |
- **Developed by:** Rezaul Karim, Ph.D.
|
30 |
- **Funded by [optional]:** Self
|
31 |
- **Shared by [optional]:** Rezaul Karim, Ph.D.
|
@@ -44,6 +32,54 @@ label_mapping = {
|
|
44 |
|
45 |
The model is already fine-tuned for downstream financial sentiment analysis tasks.
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
## How to Get Started with the Model
|
48 |
|
49 |
Use the code below to get started with the model.
|
@@ -163,7 +199,7 @@ def compute_metrics(eval_pred):
|
|
163 |
|
164 |
## Citation [optional]
|
165 |
|
166 |
-
<!-- If
|
167 |
|
168 |
**BibTeX:**
|
169 |
|
|
|
14 |
|
15 |
This a fine-tuned GPT2 model on the https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train dataset for the down-stream financial sentiment analysis.
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
- **Developed by:** Rezaul Karim, Ph.D.
|
18 |
- **Funded by [optional]:** Self
|
19 |
- **Shared by [optional]:** Rezaul Karim, Ph.D.
|
|
|
32 |
|
33 |
The model is already fine-tuned for downstream financial sentiment analysis tasks.
|
34 |
|
35 |
+
```
|
36 |
+
import torch
|
37 |
+
|
38 |
+
# Load your fine-tuned model and tokenizer
|
39 |
+
model = AutoModelForSequenceClassification.from_pretrained("fine_tuned_finsetiment_model")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("fine_tuned_finsetiment_model")
|
41 |
+
|
42 |
+
# Define the label mapping as provided
|
43 |
+
label_mapping_reverse = {
|
44 |
+
'LABEL_0': 'mildly positive',
|
45 |
+
'LABEL_1': 'mildly negative',
|
46 |
+
'LABEL_2': 'moderately negative',
|
47 |
+
'LABEL_3': 'moderately positive',
|
48 |
+
'LABEL_4': 'positive',
|
49 |
+
'LABEL_5': 'negative',
|
50 |
+
'LABEL_6': 'neutral',
|
51 |
+
'LABEL_7': 'strong negative',
|
52 |
+
'LABEL_8': 'strong positive'
|
53 |
+
}
|
54 |
+
|
55 |
+
def model_predict(text):
|
56 |
+
# Tokenize the input text
|
57 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
58 |
+
|
59 |
+
# Get predictions from the model
|
60 |
+
with torch.no_grad():
|
61 |
+
logits = model(**inputs).logits
|
62 |
+
|
63 |
+
# Convert to probabilities
|
64 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
65 |
+
|
66 |
+
# Create a list of tuples with label and probability
|
67 |
+
label_prob_pairs = [(label_mapping_reverse[label_idx], prob.item())
|
68 |
+
for label_idx, prob in enumerate(probabilities.squeeze())]
|
69 |
+
|
70 |
+
# Sort the list by probability in descending order
|
71 |
+
sorted_label_prob_pairs = sorted(label_prob_pairs, key=lambda pair: pair[1], reverse=True)
|
72 |
+
|
73 |
+
# Return the sorted list of label-probability pairs
|
74 |
+
return sorted_label_prob_pairs
|
75 |
+
|
76 |
+
# Example usage
|
77 |
+
text = "Intel Corporation (NASDAQ: INTC) has unveiled a remote verification platform called Project Amber"
|
78 |
+
predictions = model_predict(text)
|
79 |
+
for label, prob in predictions:
|
80 |
+
print(f"{label}: {prob:.3f}")
|
81 |
+
```
|
82 |
+
|
83 |
## How to Get Started with the Model
|
84 |
|
85 |
Use the code below to get started with the model.
|
|
|
199 |
|
200 |
## Citation [optional]
|
201 |
|
202 |
+
<!-- If a paper or blog post is introducing the model, the APA and Bibtex information for that should go in this section. -->
|
203 |
|
204 |
**BibTeX:**
|
205 |
|