Rezaul Karim commited on
Commit
2ec2d86
1 Parent(s): 1b7c35e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -123
README.md CHANGED
@@ -1,94 +1,131 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
  [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
@@ -102,27 +139,15 @@ Use the code below to get started with the model.
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
@@ -130,44 +155,6 @@ Use the code below to get started with the model.
130
 
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
  ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
@@ -176,26 +163,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
176
 
177
  [More Information Needed]
178
 
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
  ---
7
 
8
  # Model Card for Model ID
9
+ https://huggingface.co/rezahf2024/fine_tuned_financial_setiment_analysis_gpt2_model
 
 
 
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
+ This a fine-tuned GPT2 model on the https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train dataset for the down-stream financial sentiment analysis.
16
+
17
+ label_mapping = {
18
+ 'LABEL_0': 'mildly positive',
19
+ 'LABEL_1': 'mildly negative',
20
+ 'LABEL_2': 'moderately negative',
21
+ 'LABEL_3': 'moderately positive',
22
+ 'LABEL_4': 'positive',
23
+ 'LABEL_5': 'negative',
24
+ 'LABEL_6': 'neutral',
25
+ 'LABEL_7': 'strong negative',
26
+ 'LABEL_8': 'strong positive'
27
+ }
28
+
29
+ - **Developed by:** Rezaul Karim, Ph.D.
30
+ - **Funded by [optional]:** Self
31
+ - **Shared by [optional]:** Rezaul Karim, Ph.D.
32
+ - **Model type:** Fine-tuned GPT2
33
+ - **Language(s) (NLP):** financial sentiment analysis
34
+ - **License:** MIT
35
+ - **Finetuned from model [optional]:** https://huggingface.co/datasets/mteb/tweet_sentiment_extraction
36
 
37
  ### Model Sources [optional]
38
 
39
+ - **Repository:** https://github.com/rezacsedu/financial_sentiment_analysis_LLM
40
+ - **Paper [optional]:** on the way
41
+ - **Demo [optional]:** on the way
 
 
42
 
43
  ## Uses
44
 
45
+ The model is already fine-tuned for downstream financial sentiment analysis tasks.
46
 
47
+ ## How to Get Started with the Model
48
 
49
+ Use the code below to get started with the model.
50
 
51
  [More Information Needed]
52
 
53
+ ## Training Details
54
 
55
+ ### Training Data
56
 
57
+ from transformers import GPT2Tokenizer
58
 
59
+ dataset = load_dataset("FinGPT/fingpt-sentiment-train")
60
 
61
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
62
+ tokenizer.pad_token = tokenizer.eos_token
63
 
64
+ def tokenize_function(examples):
65
+ return tokenizer(examples["input"], padding="max_length", truncation=True)
66
 
67
+ tokenized_datasets = dataset.map(tokenize_function, batched=True)
68
 
69
+ from datasets import DatasetDict
70
+ import random
71
+ import string
72
 
73
+ def generate_random_id():
74
+ return ''.join(random.choices(string.ascii_lowercase + string.digits, k=10))
75
 
76
+ unique_outputs = set(dataset['train']['output'])
77
 
78
+ #label_mapping = {'mildly positive': 0, 'positive': 1, 'strong positive':2, 'moderately positive': 3, 'negative': 4, 'neutral': 5} # Add more mappings as needed
79
+ label_mapping = {label: index for index, label in enumerate(unique_outputs)}
80
 
81
+ def transform_dataset(dataset):
82
+ dataset = dataset.rename_column('input', 'text')
83
+ dataset = dataset.rename_column('output', 'label_text')
84
 
85
+ dataset = dataset.remove_columns(['instruction'])
86
 
87
+ dataset = dataset.add_column('id', [generate_random_id() for _ in range(dataset.num_rows)])
88
+ dataset = dataset.add_column('label', [label_mapping[label_text] for label_text in dataset['label_text']])
89
 
90
+ return dataset
91
 
92
+ transformed_dataset = DatasetDict({'train': transform_dataset(tokenized_datasets['train'])})
93
+ transformed_dataset['train'].set_format(type=None, columns=['id', 'text', 'label', 'label_text', 'input_ids', 'attention_mask'])
94
 
95
+ train_test_split = transformed_dataset['train'].train_test_split(test_size=0.3, seed=42)
96
 
97
+ tokenized_datasets['test'] = train_test_split['test']
98
+ tokenized_datasets['train'] = train_test_split['train']
99
 
100
+ small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(100))
101
+ small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(100))
102
 
103
+ ### Fine-tune Procedure
104
 
105
+ from transformers import GPT2ForSequenceClassification
106
+ from transformers import TrainingArguments, Trainer
107
 
108
+ model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=9)
109
 
110
+ training_args = TrainingArguments(
111
+ output_dir="test_trainer",
112
+ #evaluation_strategy="epoch",
113
+ per_device_train_batch_size=1, # Reduce batch size here
114
+ per_device_eval_batch_size=1, # Optionally, reduce for evaluation as well
115
+ gradient_accumulation_steps=4
116
+ )
117
+
118
+ trainer = Trainer(
119
+ model=model,
120
+ args=training_args,
121
+ train_dataset=small_train_dataset,
122
+ eval_dataset=small_eval_dataset,
123
+ compute_metrics=compute_metrics,
124
+ )
125
 
126
+ trainer.train()
127
+ trainer.evaluate()
128
+ trainer.save_model("fine_tuned_finsetiment_model")
129
 
130
  #### Training Hyperparameters
131
 
 
139
 
140
  ## Evaluation
141
 
142
+ import evaluate
143
 
144
+ metric = evaluate.load("accuracy")
145
 
146
+ def compute_metrics(eval_pred):
147
+ logits, labels = eval_pred
148
+ predictions = np.argmax(logits, axis=-1)
149
 
150
+ return metric.compute(predictions=predictions, references=labels)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
  ### Results
153
 
 
155
 
156
  #### Summary
157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  ## Citation [optional]
159
 
160
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
163
 
164
  [More Information Needed]
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
  ## Model Card Contact
168
 
169