File size: 13,785 Bytes
a8421a4 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b81bef79a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b81bef7a30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b81bef7ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b81bef7b50>", "_build": "<function ActorCriticPolicy._build at 0x78b81bef7be0>", "forward": "<function ActorCriticPolicy.forward at 0x78b81bef7c70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b81bef7d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b81bef7d90>", "_predict": "<function ActorCriticPolicy._predict at 0x78b81bef7e20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b81bef7eb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b81bef7f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b81bf04040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b81be9d380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717336701713192618, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMy/T17vPK69UyyuZG0PzaV0aC7ZTLQOAAAgD8AAIA/88/0PeEa/brYiA44bx7/tNmSv7t2Kiy3AACAPwAAgD9AC/A9bBH+u46VGr6zBLY87/ScPfZgaL4AAIA/AACAP2AKE76OP0A/krEwPgXbpL6+uoA9biAzPQAAAAAAAAAAzbdFPa6Vh7q1rG65Dc7Us/xJ5Loe24k4AACAPwAAgD+mu5q9KbgoutXYnzpkZlg2zxIxObQ7vrkAAIA/AACAP2ZDxDxxbQ+5Yd8YPMxVmTXQtsy7UHWsNAAAgD8AAIA/Zo+3vEgJgjkbEmM6Iye2NWKPFzwKX4u5AACAPwAAgD9gPCk+CCaDvBdqNTqRsU64ydTkvYB8brkAAIA/AACAPwAWID3DTXu6Q+vYuzXcNziF9y27RnedtQAAgD8AAIA/mkxUPayd2Dya8Ps88tZkvs3cUT0qVPk5AAAAAAAAAAAzB3E9e6SGupe5i7nNVI+0AC8SOx56oTgAAIA/AACAP5pZGTqPjm+6hdPmOlohQjVYBpM6ItkGugAAgD8AAIA/AHmhPK6Bg7q9HCc4TWMqM/Dcmbp6pkC3AACAPwAAgD8AR7U89hhdugU9fbnJuVW0z18uO9K+lDgAAIA/AACAP4Do7z1SmOe5h3gEOdX0GzX45wK7ajQduAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJQAUDdP+KMAWyUTegDjAF0lEdAkPVTaGpMpXV9lChoBkdAW9cPEsJ6Y2gHTegDaAhHQJD2spMHryF1fZQoaAZHQGWGqYzBRANoB03oA2gIR0CQ+Pmhdt2tdX2UKGgGR0BmOU/6fra/aAdN6ANoCEdAkPphQaaTfXV9lChoBkdAXh3N6gM+eWgHTegDaAhHQJD+5t3wCr91fZQoaAZHQGF7bfHggoxoB03oA2gIR0CRAh+gDifhdX2UKGgGR0BmFOp0fYBeaAdN6ANoCEdAkQxx1oxpL3V9lChoBkdAYZr2Pkq+amgHTegDaAhHQJEP5cjZ+QV1fZQoaAZHQGDUIbn5i3JoB03oA2gIR0CRE58Aq/dqdX2UKGgGR0Bj75s67ulXaAdN6ANoCEdAkRhrYK6WgXV9lChoBkdAYxYWj4593WgHTegDaAhHQJEegyDZlFt1fZQoaAZHQGVtzOPeYUpoB03oA2gIR0CRHyMb3oLYdX2UKGgGR0BkSg22oegdaAdN6ANoCEdAkSS7Ub1h9nV9lChoBkdAZRl2ys0YTGgHTegDaAhHQJElS5SWJJp1fZQoaAZHQGSMIB7u2JBoB03oA2gIR0CRK0a2nbZfdX2UKGgGR0BlIOq1gH/taAdN6ANoCEdAkSzM2eg+QnV9lChoBkdAZDYU/OdGzGgHTegDaAhHQJFCuyWzF/B1fZQoaAZHQGZDbGm1pkBoB03oA2gIR0CRQ6T1kDp1dX2UKGgGR0BjFKbayrxRaAdN6ANoCEdAkUUTltCRfXV9lChoBkdAZfVgJkXk52gHTegDaAhHQJFGEb2lEZ11fZQoaAZHQGB5OxrzoU1oB03oA2gIR0CRSY6Gxlg/dX2UKGgGR0BQX5IpYs/ZaAdL8mgIR0CRSpo99tuUdX2UKGgGR0Bg9zSE12q2aAdN6ANoCEdAkUyqa5PM0XV9lChoBkdAYEHOjZcs2GgHTegDaAhHQJFXHfP5YYB1fZQoaAZHQGPByFXaJyhoB03oA2gIR0CRW13z+WGAdX2UKGgGR0BiJqJVKf4AaAdN6ANoCEdAkWCoNmUW23V9lChoBkdAYxKkRjBl+WgHTegDaAhHQJFnsRSP2f11fZQoaAZHQGX1Y3m3fANoB03oA2gIR0CRblxhUipvdX2UKGgGR0BlD318LKFJaAdN6ANoCEdAkW8b30wrUnV9lChoBkdAXMS9M9KVZGgHTegDaAhHQJF1hrAP/aR1fZQoaAZHQGGO0iQkondoB03oA2gIR0CRdi9KmKqGdX2UKGgGR0BEbCfHxSYPaAdL8WgIR0CRdnfdAPd3dX2UKGgGR0BnSxNucc2jaAdN6ANoCEdAkXyidBjWkXV9lChoBkdAYM37rs0HhWgHTegDaAhHQJGSVi3G4qh1fZQoaAZHQGdE1QyhzvJoB03oA2gIR0CRk8bgCOm0dX2UKGgGR0BivPgeii7DaAdN6ANoCEdAkZYMIu5BknV9lChoBkdAYq70WdmQKmgHTegDaAhHQJGXnv5P/Jh1fZQoaAZHQES/AVwgkkdoB00jAWgIR0CRm/TR6WxAdX2UKGgGR0BmYxMYdhiLaAdN6ANoCEdAkZyIkeIVM3V9lChoBkdAYXNzhgmZ3WgHTegDaAhHQJGdseii7Cl1fZQoaAZHQGWrxNqQA+9oB03oA2gIR0CRn7YMfA9FdX2UKGgGR0BCHb48EFGHaAdL4mgIR0CRo1upjtojdX2UKGgGR0BkC6w0O3DvaAdN6ANoCEdAkaoEt7KJVXV9lChoBkdAYCp7sv7FbWgHTegDaAhHQJGtdMwlByF1fZQoaAZHQGd76Wom5UdoB03oA2gIR0CRsUgNgBtDdX2UKGgGR0Bk/BhDw6QvaAdN6ANoCEdAkb2Wce8wpXV9lChoBkdAYRw5Xlr/KmgHTegDaAhHQJG+VWIXTE11fZQoaAZHQGZufra/RE5oB03oA2gIR0CRxSCMxXXAdX2UKGgGR0BhINxCIDYAaAdN6ANoCEdAkcYBdyDIzXV9lChoBkdAX+qad+Xqq2gHTegDaAhHQJHOlBQemvZ1fZQoaAZHQGORdfb9If9oB03oA2gIR0CR5BmJFb3XdX2UKGgGR0Bjum9pRGc4aAdN6ANoCEdAkeUmz4UN8XV9lChoBkdAX9vAdn0032gHTegDaAhHQJHn3x7RfF91fZQoaAZHQGWyR7qptJpoB03oA2gIR0CR6xdGy5ZsdX2UKGgGR0BhrNjI7vG7aAdN6ANoCEdAkeubZi/fwnV9lChoBkdAZ7az8gpz92gHTegDaAhHQJHssCxNZeR1fZQoaAZHQGUeRGlQ/HJoB03oA2gIR0CR7qVoHs1LdX2UKGgGR0BjutQEZBLPaAdN6ANoCEdAkfIhguyu6nV9lChoBkdAaCJLyMDOkmgHTegDaAhHQJH47bEgntx1fZQoaAZHQGT5Vv/BFd9oB03oA2gIR0CR/aaF23a0dX2UKGgGR0BlsVcD8tPIaAdN6ANoCEdAkgMO6unuRnV9lChoBkdAYbVxbSqlxmgHTegDaAhHQJIQ3pnpSrJ1fZQoaAZHQGJmEzGgi/xoB03oA2gIR0CSEayxzJZGdX2UKGgGR0Bj+HkkrwvyaAdN6ANoCEdAkhhN4NZvDXV9lChoBkdAYvxsKLKmsWgHTegDaAhHQJIY9ZwGW2R1fZQoaAZHQGOqg7HQyARoB03oA2gIR0CSHtq4H5aedX2UKGgGR0BjU7VSXMQmaAdN6ANoCEdAkiIvybx3FHV9lChoBkdAYN1GFzuF6GgHTegDaAhHQJIjHg0j1PF1fZQoaAZHQGJnS8an755oB03oA2gIR0CSOkiDM/yHdX2UKGgGR0Bjk+2Xsw+MaAdN6ANoCEdAkj1cnVoYenV9lChoBkdAYXBh3qzJIWgHTegDaAhHQJI94wFkhA51fZQoaAZHQGcjCPhhpg1oB03oA2gIR0CSPxDfWMCLdX2UKGgGR0BkLpQ1rIo3aAdN6ANoCEdAkkEgEyLyc3V9lChoBkdARf4xUNrj52gHS/xoCEdAkkOLm6oVEnV9lChoBkdAYjyzj3mFJ2gHTegDaAhHQJJEnTtsvZh1fZQoaAZHQD18cABDG99oB00PAWgIR0CSRVwnYxtYdX2UKGgGR0BnEhhScbzcaAdN6ANoCEdAkkpYGMXJo3V9lChoBkdAYvvCVrylN2gHTegDaAhHQJJNepZOi351fZQoaAZHQGORjLjghr5oB03oA2gIR0CSUQ2VVxS6dX2UKGgGR0BjFVSQ5myxaAdN6ANoCEdAkl1YG2TgVHV9lChoBkdAZOcYQ8OkL2gHTegDaAhHQJJeIq0+kgx1fZQoaAZHQGOU/a6BiCtoB03oA2gIR0CSZZmh/RVqdX2UKGgGR0BmDR5iVjZtaAdN6ANoCEdAkmZ5mI0qIHV9lChoBkdAX5ne0ojOcGgHTegDaAhHQJJvBYigTRJ1fZQoaAZHQGadk4WDYiBoB03oA2gIR0CSiI4yoGY8dX2UKGgGR0BhNkuanaWYaAdN6ANoCEdAkoxnH/95yHV9lChoBkdAZEH0cwQDm2gHTegDaAhHQJKNAPI4lyB1fZQoaAZHQGKUtTUAks1oB03oA2gIR0CSjlkVeruIdX2UKGgGR0Bmzv779AHFaAdN6ANoCEdAkpCh2B8QZnV9lChoBkdAYAhJlrdnCmgHTegDaAhHQJKTNeF+NLl1fZQoaAZHQGIpio86mwdoB03oA2gIR0CSlFEd/8VIdX2UKGgGR0Bj1/MINVinaAdN6ANoCEdAkpUr349HMHV9lChoBkdAX8DGlyimEWgHTegDaAhHQJKbx+YtxuN1fZQoaAZHQGTrusDGLk1oB03oA2gIR0CSn+AwfyPNdX2UKGgGR0BiMnb9If8uaAdN6ANoCEdAkqPCkTHsC3V9lChoBkdAZHo/j81n/WgHTegDaAhHQJKvLlyR0U51fZQoaAZHQGSuwYLsrupoB03oA2gIR0CSr+qO938odX2UKGgGR0BlD5Bw++ueaAdN6ANoCEdAkrYM6FM7EHV9lChoBkdAZNNI3BHkLmgHTegDaAhHQJK2oyckMTh1fZQoaAZHQF76Z5zHS4RoB03oA2gIR0CSvLGNJe3QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |