Upload PPO LunarLander-v2 trained agent - defaults 1e6 timesteps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 254.31 +/- 23.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff127a8f050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff127a8f0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff127a8f170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff127a8f200>", "_build": "<function ActorCriticPolicy._build at 0x7ff127a8f290>", "forward": "<function ActorCriticPolicy.forward at 0x7ff127a8f320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff127a8f3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff127a8f440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff127a8f4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff127a8f560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff127a8f5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff127ab4150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651779761.8903277, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANPytj6KzDU/MI9ovcKXgL7mN1Y+fhH2vQAAAAAAAAAArf0TvrTusj0CNSc+MJSrvmZWSD0xgJ+9AAAAAAAAAAAAlB69cZQqu8gx9LoWw488SjRaPDVQd70AAIA/AACAPwA8mjuuFae6S7Lvu9u8DjhnP5k6mqsJtwAAgD8AAIA/WoWKvRzAJby49M+7+oeZPFDMjL07T309AACAPwAAgD8AWxW+eiSVPlw2jj1AgG2+E90dutKy4rwAAAAAAAAAALO4tL0HOTY+mltzPjGQUL5yUDU9HgcJvAAAAAAAAAAAmiXoPbQm/T6M58q905eMvozN8DuiVmK8AAAAAAAAAABN7aa9rmeauvWDfruia1i1jkUHO49IkjoAAAAAAACAPzMzvzn2MHK6XkyBtwmzULF8kzG7qtWVNgAAgD8AAIA/mrl6O0J3vD/SDjU9V9yePss0wjtCy2I9AAAAAAAAAACz0nY9Q3qeP8Ye7j0V6oO+cQmpPTAcFj0AAAAAAAAAAM1HPj2PtmW6rpontnds87C0WCq5sgVBNQAAgD8AAIA/puqlPUgpnbrhSwu7mje9OcFnNrte0kg5AACAPwAAgD/AY7s99lgIvORZPjwwYtU8efdvPQS6rr0AAIA/AAAAAGb5bb34iZM/WgSovUBgub7Hz4K94kWjvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQZyHExhxb0CUhpRSlIwBbJRNSAGMAXSUR0CY+Rg7YChfdX2UKGgGaAloD0MIH4Kq0Ws4cECUhpRSlGgVTVYBaBZHQJj5Xq4YrJ91fZQoaAZoCWgPQwhEp+fdWGhIQJSGlFKUaBVL5WgWR0CY/QB8x9G7dX2UKGgGaAloD0MIdxIR/kWoRUCUhpRSlGgVTSEBaBZHQJj9pm8M/hV1fZQoaAZoCWgPQwjs9lllplJvQJSGlFKUaBVNKgFoFkdAmP5LblA/s3V9lChoBmgJaA9DCPeTMT5MNHBAlIaUUpRoFU2hAWgWR0CZGpqKP4mDdX2UKGgGaAloD0MIinJp/EJGbECUhpRSlGgVTUEBaBZHQJkcRfUnXup1fZQoaAZoCWgPQwgjFFtB0zxyQJSGlFKUaBVNVwFoFkdAmR0ogq3EynV9lChoBmgJaA9DCLeXNEbrRWNAlIaUUpRoFU3oA2gWR0CZHWRjjJdTdX2UKGgGaAloD0MIx/KuekC8cUCUhpRSlGgVTV4BaBZHQJkdrUDuBtl1fZQoaAZoCWgPQwhR2bCmcmpwQJSGlFKUaBVNeAFoFkdAmR4kPDpC8nV9lChoBmgJaA9DCI85z9gXxXFAlIaUUpRoFU1RAWgWR0CZHq2LHdXUdX2UKGgGaAloD0MIjj9R2TAdcECUhpRSlGgVTT4BaBZHQJkfpg6U7jl1fZQoaAZoCWgPQwhBLQYPU61sQJSGlFKUaBVNXgFoFkdAmR+xUaQ3gnV9lChoBmgJaA9DCBVwz/MnQWxAlIaUUpRoFU2XAWgWR0CZIPOfdyksdX2UKGgGaAloD0MIt+171F9/NECUhpRSlGgVTRsBaBZHQJkiKswL3K11fZQoaAZoCWgPQwhV203wjXJxQJSGlFKUaBVNfAFoFkdAmSJBBJI1+HV9lChoBmgJaA9DCN1FmKKcInFAlIaUUpRoFU1rAWgWR0CZJSO5J9RadX2UKGgGaAloD0MI4pANpMsOckCUhpRSlGgVTVABaBZHQJknt8Ti84B1fZQoaAZoCWgPQwjWWMLaGEJuQJSGlFKUaBVNawFoFkdAmSqdVaOghHV9lChoBmgJaA9DCIPeG0MA9G5AlIaUUpRoFU14AWgWR0CZKq13+uNhdX2UKGgGaAloD0MIPs40YXuhcUCUhpRSlGgVTSEBaBZHQJkrsTzundh1fZQoaAZoCWgPQwhUNqypbHRxQJSGlFKUaBVNSAFoFkdAmSyJ88cMmXV9lChoBmgJaA9DCNLfS+HBUHBAlIaUUpRoFU1yAWgWR0CZLVWhysCDdX2UKGgGaAloD0MI/Z/DfLkHckCUhpRSlGgVTZYBaBZHQJktetxMnJF1fZQoaAZoCWgPQwjSjEXTmXNxQJSGlFKUaBVNVwFoFkdAmS3cnZ00WXV9lChoBmgJaA9DCLQFhNZDiHBAlIaUUpRoFU04AWgWR0CZL6K/EfkndX2UKGgGaAloD0MILEZda+/OcECUhpRSlGgVTV4BaBZHQJkv3mFJxvN1fZQoaAZoCWgPQwiWl/xPfjRvQJSGlFKUaBVNJAFoFkdAmTAzwMH8j3V9lChoBmgJaA9DCJUp5iBobnBAlIaUUpRoFU1rAWgWR0CZMFq/ub7TdX2UKGgGaAloD0MItW6D2u8Da0CUhpRSlGgVTaYBaBZHQJkwkLofSx91fZQoaAZoCWgPQwjmkNRCCT9yQJSGlFKUaBVNTwFoFkdAmTHY+bExZnV9lChoBmgJaA9DCGvSbYncTG9AlIaUUpRoFU0xAWgWR0CZM2pvxYq5dX2UKGgGaAloD0MIZan1fqNRPECUhpRSlGgVS+xoFkdAmTTo3FUADXV9lChoBmgJaA9DCLFvJxFhgnJAlIaUUpRoFU14AWgWR0CZOWMZxaPkdX2UKGgGaAloD0MIr7Mh/8ycbUCUhpRSlGgVTUkBaBZHQJk5nXEqDsd1fZQoaAZoCWgPQwhQ4nMnWC9vQJSGlFKUaBVNTAFoFkdAmTrcL4N7SnV9lChoBmgJaA9DCP61vHK9O3FAlIaUUpRoFU1NAWgWR0CZPJnNPgvUdX2UKGgGaAloD0MItRoS99gObkCUhpRSlGgVTUIBaBZHQJk8mh11W811fZQoaAZoCWgPQwj5LTpZakhtQJSGlFKUaBVNUwFoFkdAmT0TfFaStHV9lChoBmgJaA9DCDwXRnrRfnBAlIaUUpRoFU0tAWgWR0CZPZbxEv0zdX2UKGgGaAloD0MIYytoWmJDRECUhpRSlGgVTQIBaBZHQJk+Zo+Ofd11fZQoaAZoCWgPQwjjpZvEIERxQJSGlFKUaBVNmQFoFkdAmT/JC4SYgXV9lChoBmgJaA9DCBy3mJ8bn21AlIaUUpRoFU1NAWgWR0CZP+OHFglXdX2UKGgGaAloD0MIt39lpcmMcECUhpRSlGgVTUkBaBZHQJlAIsd1dPd1fZQoaAZoCWgPQwjwEwfQrytyQJSGlFKUaBVNZwFoFkdAmUCmVJL/THV9lChoBmgJaA9DCChiEcMOUy9AlIaUUpRoFUvqaBZHQJlFJIjGDL91fZQoaAZoCWgPQwh3EDtTKGNwQJSGlFKUaBVNbwFoFkdAmUVrCN0eVHV9lChoBmgJaA9DCAM+P4wQuWtAlIaUUpRoFU1xAWgWR0CZR04ecQRPdX2UKGgGaAloD0MIJHzvb5BxckCUhpRSlGgVTRYBaBZHQJlIfhS9/SZ1fZQoaAZoCWgPQwh7ouvCj8xxQJSGlFKUaBVNJAFoFkdAmWc2ViWmg3V9lChoBmgJaA9DCJqZmZkZmGhAlIaUUpRoFU3eA2gWR0CZZ164Ds+ndX2UKGgGaAloD0MIGhcOhKTXcECUhpRSlGgVTUABaBZHQJloM9nscAB1fZQoaAZoCWgPQwi5+rFJfiluQJSGlFKUaBVNNAFoFkdAmWiP0RODa3V9lChoBmgJaA9DCNtv7UTJ3XBAlIaUUpRoFU0xAWgWR0CZaSC4z7/GdX2UKGgGaAloD0MIwsHexJC0cECUhpRSlGgVTWMBaBZHQJlp1schkiF1fZQoaAZoCWgPQwgZ/tMNFD9xQJSGlFKUaBVNMAFoFkdAmWqqG1x82XV9lChoBmgJaA9DCL6FdeOdQnNAlIaUUpRoFU1HAWgWR0CZa0jXnQpndX2UKGgGaAloD0MI0xIro5FTcECUhpRSlGgVTcIBaBZHQJlraPcSGrV1fZQoaAZoCWgPQwiTGtoArB5xQJSGlFKUaBVNTQFoFkdAmWxcXWOIZnV9lChoBmgJaA9DCJgTtMlhwnFAlIaUUpRoFU1hAWgWR0CZbHFZPl+3dX2UKGgGaAloD0MISzs1lxufakCUhpRSlGgVTSMBaBZHQJlundyksSV1fZQoaAZoCWgPQwiyDkdX6aRuQJSGlFKUaBVNMAFoFkdAmW9SApazNXV9lChoBmgJaA9DCPxSP28q+G5AlIaUUpRoFU0wAWgWR0CZcePj4pMIdX2UKGgGaAloD0MIelbSii+BcUCUhpRSlGgVTUkBaBZHQJlx8WgvlEJ1fZQoaAZoCWgPQwjaOc0C7UNyQJSGlFKUaBVNLQFoFkdAmXRY95hScnV9lChoBmgJaA9DCEhRZ+4hIm1AlIaUUpRoFU0YAWgWR0CZdHEpRXOodX2UKGgGaAloD0MIyM1wA/6QckCUhpRSlGgVTSgBaBZHQJl1wrEtNBZ1fZQoaAZoCWgPQwgPmIdMubNxQJSGlFKUaBVNPAFoFkdAmXXPEn9ehXV9lChoBmgJaA9DCB3nNuHe22tAlIaUUpRoFU11AWgWR0CZd5IUJv5ydX2UKGgGaAloD0MIvJF55I/GbUCUhpRSlGgVTbQDaBZHQJl3/K/20zF1fZQoaAZoCWgPQwhETl/PV99sQJSGlFKUaBVNTQFoFkdAmXg0RSP2f3V9lChoBmgJaA9DCBufyf55CXBAlIaUUpRoFU05AWgWR0CZeOgW8AaOdX2UKGgGaAloD0MIMILGTKIUcECUhpRSlGgVTVkBaBZHQJl5gXTEzft1fZQoaAZoCWgPQwjIfhZL0QdyQJSGlFKUaBVNNQFoFkdAmXnLbYbsGHV9lChoBmgJaA9DCPhQoiUP+3BAlIaUUpRoFU08AWgWR0CZef5s0pEydX2UKGgGaAloD0MI1LfM6XI9cUCUhpRSlGgVTXUBaBZHQJl7L6DXe3x1fZQoaAZoCWgPQwg+XHLcKXVwQJSGlFKUaBVNSAFoFkdAmXyiZrpJPXV9lChoBmgJaA9DCL/VOnH5QXFAlIaUUpRoFU1EAWgWR0CZfTCKaXrudX2UKGgGaAloD0MI9MDHYIVncUCUhpRSlGgVTREBaBZHQJl9qPfbblB1fZQoaAZoCWgPQwjElh5N9dtrQJSGlFKUaBVNLgFoFkdAmX7KFAVwgnV9lChoBmgJaA9DCNriGp+JvHFAlIaUUpRoFU0+AWgWR0CZgeH80k4WdX2UKGgGaAloD0MI+N7foH3wcUCUhpRSlGgVTUoBaBZHQJmCllPJq7B1fZQoaAZoCWgPQwgpPdNLDCtuQJSGlFKUaBVNQwFoFkdAmYO1c2R7q3V9lChoBmgJaA9DCJ2ed2OBqnFAlIaUUpRoFU0wAWgWR0CZhVvyLAHndX2UKGgGaAloD0MIWHTrNf0zcECUhpRSlGgVTW4BaBZHQJmFyZssQNF1fZQoaAZoCWgPQwgDtRg8DHlwQJSGlFKUaBVNIgFoFkdAmYZ8GxD9fnV9lChoBmgJaA9DCJyiI7n8UXFAlIaUUpRoFU0iAWgWR0CZhrU+LWI5dX2UKGgGaAloD0MIzT6PUR5gcECUhpRSlGgVTUEBaBZHQJmG8tI065p1fZQoaAZoCWgPQwjcLF4szNFwQJSGlFKUaBVNWAFoFkdAmYcAuIyj6HV9lChoBmgJaA9DCDSFzmtsPW5AlIaUUpRoFU1nAWgWR0CZhzdIGyHEdX2UKGgGaAloD0MIrWwf8pZdckCUhpRSlGgVTVABaBZHQJmH+RRuTA51fZQoaAZoCWgPQwh8DcFxGSVEQJSGlFKUaBVL/GgWR0CZiMWn0kGBdX2UKGgGaAloD0MIOGivPp6VcUCUhpRSlGgVTUgBaBZHQJmKuRzRx951fZQoaAZoCWgPQwg+A+rNKGdtQJSGlFKUaBVNRwFoFkdAmYtGU8mrsHV9lChoBmgJaA9DCHdLcsCucXBAlIaUUpRoFU06AWgWR0CZjFjrAxi5dX2UKGgGaAloD0MIeJj2zb2/cUCUhpRSlGgVTTIBaBZHQJmPImXw9aF1fZQoaAZoCWgPQwgcs+xJ4IxwQJSGlFKUaBVNMwFoFkdAmY/YIKMNt3V9lChoBmgJaA9DCKG5TiPtCnJAlIaUUpRoFU0CAmgWR0CZkWaXKKYRdX2UKGgGaAloD0MI/8pKk5ICcECUhpRSlGgVTVoBaBZHQJmSz51vETB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:245cc9157a91730dea7264292c54e94773776f4797601b476429b05fdf50de2e
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff127a8f050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff127a8f0e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff127a8f170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff127a8f200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff127a8f290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff127a8f320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff127a8f3b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff127a8f440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff127a8f4d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff127a8f560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff127a8f5f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff127ab4150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651779761.8903277,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANPytj6KzDU/MI9ovcKXgL7mN1Y+fhH2vQAAAAAAAAAArf0TvrTusj0CNSc+MJSrvmZWSD0xgJ+9AAAAAAAAAAAAlB69cZQqu8gx9LoWw488SjRaPDVQd70AAIA/AACAPwA8mjuuFae6S7Lvu9u8DjhnP5k6mqsJtwAAgD8AAIA/WoWKvRzAJby49M+7+oeZPFDMjL07T309AACAPwAAgD8AWxW+eiSVPlw2jj1AgG2+E90dutKy4rwAAAAAAAAAALO4tL0HOTY+mltzPjGQUL5yUDU9HgcJvAAAAAAAAAAAmiXoPbQm/T6M58q905eMvozN8DuiVmK8AAAAAAAAAABN7aa9rmeauvWDfruia1i1jkUHO49IkjoAAAAAAACAPzMzvzn2MHK6XkyBtwmzULF8kzG7qtWVNgAAgD8AAIA/mrl6O0J3vD/SDjU9V9yePss0wjtCy2I9AAAAAAAAAACz0nY9Q3qeP8Ye7j0V6oO+cQmpPTAcFj0AAAAAAAAAAM1HPj2PtmW6rpontnds87C0WCq5sgVBNQAAgD8AAIA/puqlPUgpnbrhSwu7mje9OcFnNrte0kg5AACAPwAAgD/AY7s99lgIvORZPjwwYtU8efdvPQS6rr0AAIA/AAAAAGb5bb34iZM/WgSovUBgub7Hz4K94kWjvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQZyHExhxb0CUhpRSlIwBbJRNSAGMAXSUR0CY+Rg7YChfdX2UKGgGaAloD0MIH4Kq0Ws4cECUhpRSlGgVTVYBaBZHQJj5Xq4YrJ91fZQoaAZoCWgPQwhEp+fdWGhIQJSGlFKUaBVL5WgWR0CY/QB8x9G7dX2UKGgGaAloD0MIdxIR/kWoRUCUhpRSlGgVTSEBaBZHQJj9pm8M/hV1fZQoaAZoCWgPQwjs9lllplJvQJSGlFKUaBVNKgFoFkdAmP5LblA/s3V9lChoBmgJaA9DCPeTMT5MNHBAlIaUUpRoFU2hAWgWR0CZGpqKP4mDdX2UKGgGaAloD0MIinJp/EJGbECUhpRSlGgVTUEBaBZHQJkcRfUnXup1fZQoaAZoCWgPQwgjFFtB0zxyQJSGlFKUaBVNVwFoFkdAmR0ogq3EynV9lChoBmgJaA9DCLeXNEbrRWNAlIaUUpRoFU3oA2gWR0CZHWRjjJdTdX2UKGgGaAloD0MIx/KuekC8cUCUhpRSlGgVTV4BaBZHQJkdrUDuBtl1fZQoaAZoCWgPQwhR2bCmcmpwQJSGlFKUaBVNeAFoFkdAmR4kPDpC8nV9lChoBmgJaA9DCI85z9gXxXFAlIaUUpRoFU1RAWgWR0CZHq2LHdXUdX2UKGgGaAloD0MIjj9R2TAdcECUhpRSlGgVTT4BaBZHQJkfpg6U7jl1fZQoaAZoCWgPQwhBLQYPU61sQJSGlFKUaBVNXgFoFkdAmR+xUaQ3gnV9lChoBmgJaA9DCBVwz/MnQWxAlIaUUpRoFU2XAWgWR0CZIPOfdyksdX2UKGgGaAloD0MIt+171F9/NECUhpRSlGgVTRsBaBZHQJkiKswL3K11fZQoaAZoCWgPQwhV203wjXJxQJSGlFKUaBVNfAFoFkdAmSJBBJI1+HV9lChoBmgJaA9DCN1FmKKcInFAlIaUUpRoFU1rAWgWR0CZJSO5J9RadX2UKGgGaAloD0MI4pANpMsOckCUhpRSlGgVTVABaBZHQJknt8Ti84B1fZQoaAZoCWgPQwjWWMLaGEJuQJSGlFKUaBVNawFoFkdAmSqdVaOghHV9lChoBmgJaA9DCIPeG0MA9G5AlIaUUpRoFU14AWgWR0CZKq13+uNhdX2UKGgGaAloD0MIPs40YXuhcUCUhpRSlGgVTSEBaBZHQJkrsTzundh1fZQoaAZoCWgPQwhUNqypbHRxQJSGlFKUaBVNSAFoFkdAmSyJ88cMmXV9lChoBmgJaA9DCNLfS+HBUHBAlIaUUpRoFU1yAWgWR0CZLVWhysCDdX2UKGgGaAloD0MI/Z/DfLkHckCUhpRSlGgVTZYBaBZHQJktetxMnJF1fZQoaAZoCWgPQwjSjEXTmXNxQJSGlFKUaBVNVwFoFkdAmS3cnZ00WXV9lChoBmgJaA9DCLQFhNZDiHBAlIaUUpRoFU04AWgWR0CZL6K/EfkndX2UKGgGaAloD0MILEZda+/OcECUhpRSlGgVTV4BaBZHQJkv3mFJxvN1fZQoaAZoCWgPQwiWl/xPfjRvQJSGlFKUaBVNJAFoFkdAmTAzwMH8j3V9lChoBmgJaA9DCJUp5iBobnBAlIaUUpRoFU1rAWgWR0CZMFq/ub7TdX2UKGgGaAloD0MItW6D2u8Da0CUhpRSlGgVTaYBaBZHQJkwkLofSx91fZQoaAZoCWgPQwjmkNRCCT9yQJSGlFKUaBVNTwFoFkdAmTHY+bExZnV9lChoBmgJaA9DCGvSbYncTG9AlIaUUpRoFU0xAWgWR0CZM2pvxYq5dX2UKGgGaAloD0MIZan1fqNRPECUhpRSlGgVS+xoFkdAmTTo3FUADXV9lChoBmgJaA9DCLFvJxFhgnJAlIaUUpRoFU14AWgWR0CZOWMZxaPkdX2UKGgGaAloD0MIr7Mh/8ycbUCUhpRSlGgVTUkBaBZHQJk5nXEqDsd1fZQoaAZoCWgPQwhQ4nMnWC9vQJSGlFKUaBVNTAFoFkdAmTrcL4N7SnV9lChoBmgJaA9DCP61vHK9O3FAlIaUUpRoFU1NAWgWR0CZPJnNPgvUdX2UKGgGaAloD0MItRoS99gObkCUhpRSlGgVTUIBaBZHQJk8mh11W811fZQoaAZoCWgPQwj5LTpZakhtQJSGlFKUaBVNUwFoFkdAmT0TfFaStHV9lChoBmgJaA9DCDwXRnrRfnBAlIaUUpRoFU0tAWgWR0CZPZbxEv0zdX2UKGgGaAloD0MIYytoWmJDRECUhpRSlGgVTQIBaBZHQJk+Zo+Ofd11fZQoaAZoCWgPQwjjpZvEIERxQJSGlFKUaBVNmQFoFkdAmT/JC4SYgXV9lChoBmgJaA9DCBy3mJ8bn21AlIaUUpRoFU1NAWgWR0CZP+OHFglXdX2UKGgGaAloD0MIt39lpcmMcECUhpRSlGgVTUkBaBZHQJlAIsd1dPd1fZQoaAZoCWgPQwjwEwfQrytyQJSGlFKUaBVNZwFoFkdAmUCmVJL/THV9lChoBmgJaA9DCChiEcMOUy9AlIaUUpRoFUvqaBZHQJlFJIjGDL91fZQoaAZoCWgPQwh3EDtTKGNwQJSGlFKUaBVNbwFoFkdAmUVrCN0eVHV9lChoBmgJaA9DCAM+P4wQuWtAlIaUUpRoFU1xAWgWR0CZR04ecQRPdX2UKGgGaAloD0MIJHzvb5BxckCUhpRSlGgVTRYBaBZHQJlIfhS9/SZ1fZQoaAZoCWgPQwh7ouvCj8xxQJSGlFKUaBVNJAFoFkdAmWc2ViWmg3V9lChoBmgJaA9DCJqZmZkZmGhAlIaUUpRoFU3eA2gWR0CZZ164Ds+ndX2UKGgGaAloD0MIGhcOhKTXcECUhpRSlGgVTUABaBZHQJloM9nscAB1fZQoaAZoCWgPQwi5+rFJfiluQJSGlFKUaBVNNAFoFkdAmWiP0RODa3V9lChoBmgJaA9DCNtv7UTJ3XBAlIaUUpRoFU0xAWgWR0CZaSC4z7/GdX2UKGgGaAloD0MIwsHexJC0cECUhpRSlGgVTWMBaBZHQJlp1schkiF1fZQoaAZoCWgPQwgZ/tMNFD9xQJSGlFKUaBVNMAFoFkdAmWqqG1x82XV9lChoBmgJaA9DCL6FdeOdQnNAlIaUUpRoFU1HAWgWR0CZa0jXnQpndX2UKGgGaAloD0MI0xIro5FTcECUhpRSlGgVTcIBaBZHQJlraPcSGrV1fZQoaAZoCWgPQwiTGtoArB5xQJSGlFKUaBVNTQFoFkdAmWxcXWOIZnV9lChoBmgJaA9DCJgTtMlhwnFAlIaUUpRoFU1hAWgWR0CZbHFZPl+3dX2UKGgGaAloD0MISzs1lxufakCUhpRSlGgVTSMBaBZHQJlundyksSV1fZQoaAZoCWgPQwiyDkdX6aRuQJSGlFKUaBVNMAFoFkdAmW9SApazNXV9lChoBmgJaA9DCPxSP28q+G5AlIaUUpRoFU0wAWgWR0CZcePj4pMIdX2UKGgGaAloD0MIelbSii+BcUCUhpRSlGgVTUkBaBZHQJlx8WgvlEJ1fZQoaAZoCWgPQwjaOc0C7UNyQJSGlFKUaBVNLQFoFkdAmXRY95hScnV9lChoBmgJaA9DCEhRZ+4hIm1AlIaUUpRoFU0YAWgWR0CZdHEpRXOodX2UKGgGaAloD0MIyM1wA/6QckCUhpRSlGgVTSgBaBZHQJl1wrEtNBZ1fZQoaAZoCWgPQwgPmIdMubNxQJSGlFKUaBVNPAFoFkdAmXXPEn9ehXV9lChoBmgJaA9DCB3nNuHe22tAlIaUUpRoFU11AWgWR0CZd5IUJv5ydX2UKGgGaAloD0MIvJF55I/GbUCUhpRSlGgVTbQDaBZHQJl3/K/20zF1fZQoaAZoCWgPQwhETl/PV99sQJSGlFKUaBVNTQFoFkdAmXg0RSP2f3V9lChoBmgJaA9DCBufyf55CXBAlIaUUpRoFU05AWgWR0CZeOgW8AaOdX2UKGgGaAloD0MIMILGTKIUcECUhpRSlGgVTVkBaBZHQJl5gXTEzft1fZQoaAZoCWgPQwjIfhZL0QdyQJSGlFKUaBVNNQFoFkdAmXnLbYbsGHV9lChoBmgJaA9DCPhQoiUP+3BAlIaUUpRoFU08AWgWR0CZef5s0pEydX2UKGgGaAloD0MI1LfM6XI9cUCUhpRSlGgVTXUBaBZHQJl7L6DXe3x1fZQoaAZoCWgPQwg+XHLcKXVwQJSGlFKUaBVNSAFoFkdAmXyiZrpJPXV9lChoBmgJaA9DCL/VOnH5QXFAlIaUUpRoFU1EAWgWR0CZfTCKaXrudX2UKGgGaAloD0MI9MDHYIVncUCUhpRSlGgVTREBaBZHQJl9qPfbblB1fZQoaAZoCWgPQwjElh5N9dtrQJSGlFKUaBVNLgFoFkdAmX7KFAVwgnV9lChoBmgJaA9DCNriGp+JvHFAlIaUUpRoFU0+AWgWR0CZgeH80k4WdX2UKGgGaAloD0MI+N7foH3wcUCUhpRSlGgVTUoBaBZHQJmCllPJq7B1fZQoaAZoCWgPQwgpPdNLDCtuQJSGlFKUaBVNQwFoFkdAmYO1c2R7q3V9lChoBmgJaA9DCJ2ed2OBqnFAlIaUUpRoFU0wAWgWR0CZhVvyLAHndX2UKGgGaAloD0MIWHTrNf0zcECUhpRSlGgVTW4BaBZHQJmFyZssQNF1fZQoaAZoCWgPQwgDtRg8DHlwQJSGlFKUaBVNIgFoFkdAmYZ8GxD9fnV9lChoBmgJaA9DCJyiI7n8UXFAlIaUUpRoFU0iAWgWR0CZhrU+LWI5dX2UKGgGaAloD0MIzT6PUR5gcECUhpRSlGgVTUEBaBZHQJmG8tI065p1fZQoaAZoCWgPQwjcLF4szNFwQJSGlFKUaBVNWAFoFkdAmYcAuIyj6HV9lChoBmgJaA9DCDSFzmtsPW5AlIaUUpRoFU1nAWgWR0CZhzdIGyHEdX2UKGgGaAloD0MIrWwf8pZdckCUhpRSlGgVTVABaBZHQJmH+RRuTA51fZQoaAZoCWgPQwh8DcFxGSVEQJSGlFKUaBVL/GgWR0CZiMWn0kGBdX2UKGgGaAloD0MIOGivPp6VcUCUhpRSlGgVTUgBaBZHQJmKuRzRx951fZQoaAZoCWgPQwg+A+rNKGdtQJSGlFKUaBVNRwFoFkdAmYtGU8mrsHV9lChoBmgJaA9DCHdLcsCucXBAlIaUUpRoFU06AWgWR0CZjFjrAxi5dX2UKGgGaAloD0MIeJj2zb2/cUCUhpRSlGgVTTIBaBZHQJmPImXw9aF1fZQoaAZoCWgPQwgcs+xJ4IxwQJSGlFKUaBVNMwFoFkdAmY/YIKMNt3V9lChoBmgJaA9DCKG5TiPtCnJAlIaUUpRoFU0CAmgWR0CZkWaXKKYRdX2UKGgGaAloD0MI/8pKk5ICcECUhpRSlGgVTVoBaBZHQJmSz51vETB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d90407f2298d733f68050285d742f3ba56231d2fb4ba51b7fe1e96945f8523e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29e1b2bca202c561a3237942af77352c1a8823f572963ad781f355755c54b8c2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca7ab485f7bd5f32af2c838d5718c8b253ff5f575548cce6b444353ce060f48a
|
3 |
+
size 236554
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 254.31077574889233, "std_reward": 23.369564193968085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:16:58.760413"}
|