rematchka commited on
Commit
cf8acdf
·
1 Parent(s): 71a9157

Upload DQN LunarLander-v2 trained agent

Browse files
DQN-MlpPolicy-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6356fb729caed649b9fc2e0612543bdd61c699badc66586ebeab6ba4aef6181f
3
+ size 110522
DQN-MlpPolicy-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
DQN-MlpPolicy-LunarLander-v2/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7fd2ada77790>",
8
+ "_build": "<function DQNPolicy._build at 0x7fd2ada77820>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd2ada778b0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7fd2ada77940>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7fd2ada779d0>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd2ada77a60>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd2ada77af0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7fd2ada6dfc0>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 8
25
+ ],
26
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
27
+ "high": "[inf inf inf inf inf inf inf inf]",
28
+ "bounded_below": "[False False False False False False False False]",
29
+ "bounded_above": "[False False False False False False False False]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA6meL/+CWDTf46QSyN+F+suXihjsMIRV4ZHkhu/Fmb795iqIdIzqhHt55YKS0cI/NAjruxXnvIcgmdRCuw3B2/1N1AJR37NtY0xN2NglmCAgPQ1HMFRfC/5T6yOBV0KflXWBKGiAL+V6xrQHoPXdmzqNtK2l2CHEXUTmk0kVgmlPNfu4GmaruPOfsVz123xSahqNUPTv+1LlvWi0yfKvK8jX8XgORWVnxztwsPZErABBaIBw7LvkK80hv0CVMBRx87gLqqnLIfNt6MwR/5E3plgjT2tLNdsPNPUvSD/jyiUI2DeuB5/oGFD+XtRltQbTD8IcFasP11VNQYzyIF08caLJ+mZ2xtIfzieUtbYQQSlAM8eWoXoPAgH7Ol/Y7TPz32j6KQdRByQOTsNJF9Xc2tfmX7S9ecTB8wx+I1F7teJSr6BV3CYZg5tFi0n8dQoJ/WsV1lbAmafeyxeqrLyLGHQpp3rAnYXHZKeYVlomQCqaFiGD7gkjn4LzLpLmznJWz65DFNOmTknlqgpvHgBP/c/JmeG6xrCDlBBxZTcXSk1pUt0aN7VhME7XUeNgY5FTRUQGS46BkOgLRl/4kHO0aSti+ezD+A6b6K0mzNxhBDJTpQtfjXUqcLCCCnX0vJ3WS1Ea2r0X5AvsOYd+zD+BIdVTkQ+2kbwcVRjuwXhanOZT8pgYSARgRiv8ad2IciXAwJ5PLg47VWaf4RHnwq8ZWzaY4H/qSQhfmmuv9yhUV3Qozckyu/GvQyrosv0k+2t8siEWhVjZ3PlHEDa/1SlNN1HU7ciz9iK4g93t3E/Q++onxUeFwCm3uxCKnAuVqfe8I+jqHYuqSmKy9rwBogtYdik7JpGw7IHhMuq1ewMfTYTBHdxR8KDs+YJwXUs6t7CJzSEoT32AhQ9oM1rFVOTa4L5mrZACe8EZvNYM16uiRzLZKQ1Cq3Tuoe5CSjLiCKkSgdC5NGUx3vG3c5/9LYZdYsa+4lY+w5INc9rK1RgdDc4q1kFAZvFTHHnRPECPYkcX1IIDCZZXyS91NJ5/NitKtvyZ6DZP43Bv/Il1oeEjgy+gpZyyeMfbQo3UrkEVvI2PdkHKrAs1WeGvqsLS/PLOcfxOIe9ATvBf7fsmwgV5RYn/wVe77mE4LYLSWNt5aIQD7LMjj5ifvEa9Nwp+c5omYy3eMKoD+EXjV7lE4MSajh9LUCFEuMy50ers5UiYbSgJDDuvDDGnF08FbLwBs7cDbHYIMLFvqTe5m6+CfA2Oq3RY7fEHwwjWQwwXJP7XL5T5ndH9ZNKHwV6ynWHC812ZJ6pvx7c0iTYlNPdRPj3huFBKgFvrYI4C1aN/JXK8OL6JfBPFl1VBkzPzF+w6BcTrzlxZtz+Q5ZFgTj87nF3v2BKZWlDhrch+3+7jphZquod7g7rMAaX4xbpkBGbwQmPQVx6vy1N3KegtRF1T5YGlKEbZDeQVBJ4HQst9JgQ0vRDUY9Ku/4kFh7z1QqbbMldQb90S3/8FbCkvvopJAvH2t+C+prgiy/cLz2aKQCeD6R0WHX+xWWsNPWG/PiwhNP4KzmKmdIpyBUPDqKOaI/f20Ve5Psf31hJ3tEt4xwAF7YudlqS7QIXgWyJBJqeGbycdrbqWjuVd0yYWzlk0w8iULlbawKkKzhRTMRCEMnl0i08uQwQiWxbWGwgR9mq16LsD8J48qAiy0QjvrindJ76T3pKHQ1G5ElyctIYJRll7qLkOCBs14j+dGBYn6Bzf65UeKAUZwv3m7BEsSeG4nfXwMBX6YYv9/zMnMJTTPPHSTXCrmnjCevdI+tp4eaLtAEoKIZczAw3wdSyQ0q5vQwwZStVvhOT7n+r1uiLPszpu0X1lOnmMhg9q//u+BGjsx00tOi0g57HoARUN4djW24ru83UBPUvN/FdTPKx/E0AaAHs248yGbIqzyBxAA6VWusdI3PDb3z3IdCzfHTXMDeONBUSEdmETTxHCQMklIqxIpLVWtuGvhvROQOum45msZ1jLY5styfBRyINeL2WbFiOrA4eZbPTpSVWCuOB7/jVe1AUjI27rbDVSktHz5luIeFoM4RsuMMZhnItEAR4lZNPoH2UfizMIMYxnDXEB4f5S2gQMHWvgjEd4FkGQ2DfvFK/wSZRlAhgZomqjo9Bb5nHw5htC7BP+ue+P8NiG+PmTNIbUJFk/AHB4LC+TvUmCtKyNB7oA0YkBcmsrUvvMHvv8aNM4vdjkmH9fAfhD+fDETjeWYI8+9rgCvaJWikI2GIV1qpnjy9jqMJVVdqozTLLCObayIQ6N8fm3ALt4lgkjsZ3qGnNGTNxf4lUhkGqFj3VgoXiN2SkJaBCnJPDu/xybe9JM+RSb+gTS9zkXXcIcJ1PKxD3+tEnNbCspxDXyTPtgrRdK8v0k/enKuYlGWhgoBUyg0W4wCmxfKTf+NP6pdtU9rqXa6z1h+JQlwFthF+f4cc5d2fbt2PW5iJ1PkShnaBKfTph72ngTBU4MYA6naR7h9ocVHj7D3Fdp9gu/HvL9q5MhmlnyVv9TfNG53R14g5gaWlwZNafgP481xraU6qxpX1vL/qI1rWj/DBhyVxx9O5TyRXOpB11MwZcUWLg9XJSKLRRNA+xQglMPQqPLFnolUletIiUnFNks3MIWdgCac/xvmPyOsFa+U5ox43Di+gMfva0sbimcH+MVWSRVKe9uxHD6mOcepsYMXzic6LGN2z+3FdEKkAorrIKJgi4O9PkS2SkoUFzo8cpiB0gS00mhjwvxVtp6FBm8TQAU5313WcZ4Wtpih7mqgjTY53diOz80XOBET7C3BhOeXX+b7Gk6QU2qzB70eWM1g0I8wbwDJLkw5sbwAlowhzo0LIUcgiz/g0mtgZjWORYNzOznyVLrBqsM7sqdpw1qlNS3TcyiqFAPihApV+zilHcsp3e7/uFXhCtV4Kk0P0CKs4nhXPw3dIAYFErR0s+4IDDR/+TbarGbCT5Pv/YwZm6lYqrtfBYijWYKJNgOMe4p6/4/fq93zoVFFiNhZfI8mwVjZpbYB7eCpsewAyACSvwjrpcqreDzzDmcppLt4iNhUL8VuwvhDxdt9/Tqev8XwpkdfbB8WrrctcHBv1y+NIPuyz1R/DTcKnesrSh+4jBGYCqEghfwgkYmDpI9husoZ8bB8dAtBa5+BtITNbVrff2BU4wxvvnGfsdiU/FkNJC3P1o56j17en07snforxTqkX0GRRd/4LSy9m4NEsaAiLup50yoUG5Un/KmajIZ72jzT+9ocyOEg3o8eBRvu7zlPO9izNon5bnD7w0mTrIV0EX7QKixA3gCchgXR0lHwtSa8FqGvS+YulGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLMHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "n": 4,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 16,
41
+ "num_timesteps": 1000000,
42
+ "_total_timesteps": 1000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1671560724314322750,
47
+ "learning_rate": 0.0001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbxKz7AVeU+71tDPeUmCr4MFZI9RwoAPQAAAAAAAAAAGo2yPo1dYD8qUA6+h57GvbmMqjzPqom8AAAAAAAAAACwa1S+3e1qPvttHT1+T4+9EDgIvBDKqDwAAAAAAAAAAE0bIz6bWOk92MJpvUd2Cb5gQyo9nRTbvAAAAAAAAAAAtu1fvmJTNz9bCam9VEa1vSLNIrxOfqI6AAAAAAAAAABIcAa/3Ds3P8rqh73gMmu9f9vnvHYU47wAAAAAAAAAAOaPH74DdkY/YIkXvqU8yL3jVoC8Su9FugAAAAAAAAAAswu1PrPYXT8fLsi9N7uzvdy69DwKuaW7AAAAAAAAAADNx4c+Ih2YP2mDx72ru3m9WZEDPClIlbwAAAAAAAAAANZ8UL41oVw+EdglPeK6Nb3ZrMG88gQTOwAAAAAAAAAAQKLKvim1rD8ztta9vSV2vaKvD74i+D89AAAAAAAAAACz4cS+u/hnP1khBT4KhrS9XcICPajEVjwAAAAAAAAAAEAegz2lmUg/6bkcvs5d+72XbaC8UFRYPAAAAAAAAAAAJko+vrd9az4m2+Y94MG7vRdsgzzaaxS8AAAAAAAAAADLibS+HfcMP0KtvbxA+yi9giXkvNogcrwAAAAAAAAAAPM+6L1cO0+6YRHDsiGM+DFGGc26+j5rMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPpvKz5m4+Y+zuJKPZHILL6X4Y49QHTcPAAAAAAAAAAAY0SzPpPsYD++Khe+tAbuvd1usTywXtq8AAAAAAAAAAAt01S+oYpsPpbEDz0VB569FRkZvNUSkjwAAAAAAAAAAHO0Iz6biO89KjAavdpDGb6AvS897cUsvAAAAAAAAAAAgxVfvufVNz9cCam9olJ9vRjRI7wBfqI6AAAAAAAAAADeQwa/f5A3P8nqh71b8fu83oDcvHgU47wAAAAAAAAAAOALHr4vBkc/XokXvqOfkb25B4C8Xu5FugAAAAAAAAAAJoy1Ph1aXj9GQNe9YhrXvTDN9jzynWe8AAAAAAAAAACzSIg+GEqYP/L1vr3TqNS9AH8SPOXRdrwAAAAAAAAAAEbnUL7npl0+CqIpPRDymr0UmMK8h8KoOwAAAAAAAAAA6xvKvqLhrD+dAwC+Q+HPve4VEr5qSCo9AAAAAAAAAAD6jMW+r3poP1ghBT4C0nu9HBMAPbrEVjwAAAAAAAAAADM9hj2jTkk/yvogvjoPA74h1qW8qpMlPAAAAAAAAAAAc3A/vnyabT41AOM9evvXvf0hhzwNEUK8AAAAAAAAAAB2arS+7jMNP2WMbLyEJYK94RfevL+mj7sAAAAAAAAAAPM+6L1cO0+6GzfPs/Dw2TGBGc26rgR1MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_episode_num": 2133,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": 0.0,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwJKrWPx2ZUCUhpRSlIwBbJRNDQOMAXSUR0CTeIFlCkXUdX2UKGgGaAloD0MIAz4/jBCuVUCUhpRSlGgVTegDaBZHQJN8F3W4EwF1fZQoaAZoCWgPQwgWTz3SYLxlQJSGlFKUaBVNvQJoFkdAk3z8qOLiuXV9lChoBmgJaA9DCJhp+1dWvGFAlIaUUpRoFU3DA2gWR0CTfQ/6fra/dX2UKGgGaAloD0MIn8vUJPieYECUhpRSlGgVTQQDaBZHQJN9Es8PnSx1fZQoaAZoCWgPQwiun/6zZsdqQJSGlFKUaBVN0wJoFkdAk5C/420iQnV9lChoBmgJaA9DCPDAAMIHUWVAlIaUUpRoFU18AmgWR0CTkURLbpNcdX2UKGgGaAloD0MIhnXj3REKcECUhpRSlGgVTRECaBZHQJOR2hg3Lmp1fZQoaAZoCWgPQwhcrn5sEiVjQJSGlFKUaBVNjwJoFkdAk5KYIWxhUnV9lChoBmgJaA9DCMbbSq9NmGpAlIaUUpRoFU3TAmgWR0CTl2D/lyR0dX2UKGgGaAloD0MIevzepr8ZZ0CUhpRSlGgVTcICaBZHQJOZEibDuSh1fZQoaAZoCWgPQwgQXOUJhNpXwJSGlFKUaBVN2QJoFkdAk5oM1Gb1AnV9lChoBmgJaA9DCM7/q44cN0/AlIaUUpRoFU1uAmgWR0CToNsoUi6hdX2UKGgGaAloD0MI7KLogY8AZ0CUhpRSlGgVTeQCaBZHQJOiacy31Bd1fZQoaAZoCWgPQwgMrrmjf35mQJSGlFKUaBVNcwNoFkdAk6LFxffGdnV9lChoBmgJaA9DCGahndMsDGVAlIaUUpRoFU3cA2gWR0CTotiuuA7QdX2UKGgGaAloD0MIIoleRrGYakCUhpRSlGgVTWMCaBZHQJOkjdCVryl1fZQoaAZoCWgPQwgvMZbpF7RlQJSGlFKUaBVN3gNoFkdAk6TPO6d1+3V9lChoBmgJaA9DCOj6Phwk0EnAlIaUUpRoFU2oAmgWR0CTp6FqzqrzdX2UKGgGaAloD0MIrp6T3rcnYECUhpRSlGgVTd4CaBZHQJOqNZid8Rd1fZQoaAZoCWgPQwjxDvCkhUlpQJSGlFKUaBVN8gJoFkdAk6pkc81XNnV9lChoBmgJaA9DCLiU88Xea2lAlIaUUpRoFU1WAmgWR0CTsvYyO7xvdX2UKGgGaAloD0MIVWe1wJ6ja0CUhpRSlGgVTWwCaBZHQJO0y4gA6uJ1fZQoaAZoCWgPQwjXvoBeOHtpQJSGlFKUaBVNyAJoFkdAk7yCxFAmiXV9lChoBmgJaA9DCJ33/3FCumpAlIaUUpRoFU0LA2gWR0CTwNUUfxMGdX2UKGgGaAloD0MIzqrP1VZFZkCUhpRSlGgVTcUCaBZHQJPBnAxi5NJ1fZQoaAZoCWgPQwjpKt1dZ0RoQJSGlFKUaBVNvQJoFkdAk8PrmdRR/HV9lChoBmgJaA9DCLXgRV9BHmRAlIaUUpRoFU0mA2gWR0CTyt9jgAIZdX2UKGgGaAloD0MIrTO+L67oZkCUhpRSlGgVTZkCaBZHQJPK8acZtN11fZQoaAZoCWgPQwjOwTOhSTljQJSGlFKUaBVN/wJoFkdAk9NtKdxyXHV9lChoBmgJaA9DCGUdjq7Sb2VAlIaUUpRoFU0eA2gWR0CT04LS/j82dX2UKGgGaAloD0MI3bHYJpWUZkCUhpRSlGgVTQgDaBZHQJPUS74BV+91fZQoaAZoCWgPQwjaHVIMkHBiQJSGlFKUaBVN8gJoFkdAk9UzQeFL4HV9lChoBmgJaA9DCE2EDU+vPmpAlIaUUpRoFU3uAmgWR0CT1UNnGsFMdX2UKGgGaAloD0MIz0wwnGsDVsCUhpRSlGgVTakCaBZHQJPYWDyvs7d1fZQoaAZoCWgPQwhkdha9U1ZjQJSGlFKUaBVNAwNoFkdAk96/ATIvJ3V9lChoBmgJaA9DCHhDGhW4umRAlIaUUpRoFU2eA2gWR0CT5hVymygPdX2UKGgGaAloD0MI91j60AVXY0CUhpRSlGgVTecCaBZHQJPsjiqABkt1fZQoaAZoCWgPQwgZy/RLRCdiQJSGlFKUaBVNEgNoFkdAk+3sAeaKDXV9lChoBmgJaA9DCI4FhUGZjmNAlIaUUpRoFU2EAmgWR0CT8m6+nIhhdX2UKGgGaAloD0MIipRm8zj0ZkCUhpRSlGgVTZoCaBZHQJP1Dr5ZbIN1fZQoaAZoCWgPQwiOXDelvJJpQJSGlFKUaBVNfQJoFkdAk/UoSYgJTnV9lChoBmgJaA9DCN/hdmhYg1tAlIaUUpRoFU3jAmgWR0CT9aLOiWVvdX2UKGgGaAloD0MIS8gHPZv8UsCUhpRSlGgVTTsCaBZHQJP2uwkgOjJ1fZQoaAZoCWgPQwg+PiE7byRqQJSGlFKUaBVNSAJoFkdAk/dy5uqFRHV9lChoBmgJaA9DCCFWf4Shf3BAlIaUUpRoFU2mAWgWR0CT+Ded07r+dX2UKGgGaAloD0MIYRdFD3weZUCUhpRSlGgVTUACaBZHQJP8UyGi5/d1fZQoaAZoCWgPQwjcRgN4C8RqQJSGlFKUaBVNbwJoFkdAk/7ZuuRs/XV9lChoBmgJaA9DCB2wq8lT0EfAlIaUUpRoFU1xAmgWR0CT/4BPbfxddX2UKGgGaAloD0MI2xZlNshtZ0CUhpRSlGgVTWgCaBZHQJP/my5Zr591fZQoaAZoCWgPQwjOqWQAKNhmQJSGlFKUaBVNmgJoFkdAlAIRxkupTHV9lChoBmgJaA9DCLjlIynpdUHAlIaUUpRoFU0rAmgWR0CUA6b3oLXudX2UKGgGaAloD0MIPBHEeThZbUCUhpRSlGgVTfYBaBZHQJQFzRplBhR1fZQoaAZoCWgPQwidvp6vWb9oQJSGlFKUaBVNLQJoFkdAlA7KZH/cWXV9lChoBmgJaA9DCPKaV3VWlW1AlIaUUpRoFU3gAWgWR0CUE/QA+6iCdX2UKGgGaAloD0MILiC0Hj5tZUCUhpRSlGgVTUgCaBZHQJQX0rUb1h91fZQoaAZoCWgPQwjZImk3egJrQJSGlFKUaBVNNwJoFkdAlBhgxFiKBXV9lChoBmgJaA9DCFfMCG8PRVjAlIaUUpRoFU25AmgWR0CUGLtw71ZldX2UKGgGaAloD0MIEmiwqfM0ZkCUhpRSlGgVTYkCaBZHQJQaHDGcWj51fZQoaAZoCWgPQwialIJur+JlQJSGlFKUaBVNwgJoFkdAlCAGgi/wiXV9lChoBmgJaA9DCMLdWbtt8mlAlIaUUpRoFU1wAmgWR0CUI7UlzEJjdX2UKGgGaAloD0MIfCb75+nCaUCUhpRSlGgVTfwCaBZHQJQkOIRAbAF1fZQoaAZoCWgPQwjn4JnQpPBnQJSGlFKUaBVNSgJoFkdAlCRVghKUV3V9lChoBmgJaA9DCIWxhSCHf2dAlIaUUpRoFU24AmgWR0CUK4oWHk92dX2UKGgGaAloD0MICJRNucILaECUhpRSlGgVTb4CaBZHQJQrxjLB9Cx1fZQoaAZoCWgPQwiVEKyqlx5pQJSGlFKUaBVNewJoFkdAlCyxtP557nV9lChoBmgJaA9DCHLBGfx9zmFAlIaUUpRoFU3PAmgWR0CUL2K+SKWLdX2UKGgGaAloD0MI6KIh45GBcECUhpRSlGgVTaYBaBZHQJQyCDIzWPN1fZQoaAZoCWgPQwgmjdE6qj5iQJSGlFKUaBVNxwJoFkdAlDMINy5qd3V9lChoBmgJaA9DCNqOqbuymUlAlIaUUpRoFU3oA2gWR0CUMyX3QD3edX2UKGgGaAloD0MIBaipZesSbECUhpRSlGgVTZQCaBZHQJQ4GDzyz5Z1fZQoaAZoCWgPQwgs1nCRexpqQJSGlFKUaBVNZgJoFkdAlDwgyqMm4XV9lChoBmgJaA9DCNodUgyQ0DzAlIaUUpRoFU2CAmgWR0CUP9DhtLtedX2UKGgGaAloD0MISvHxCVk8ZECUhpRSlGgVTasCaBZHQJRA1hiLEUF1fZQoaAZoCWgPQwh2UInrGKJRwJSGlFKUaBVNSwJoFkdAlEHnZXdTHnV9lChoBmgJaA9DCNBk/zwNN25AlIaUUpRoFU2ZAWgWR0CUQtjKPn0TdX2UKGgGaAloD0MIsCDNWLS/Z0CUhpRSlGgVTTADaBZHQJRFQ1n/T9d1fZQoaAZoCWgPQwhnmNpSh+5rQJSGlFKUaBVNTgJoFkdAlEVPa11GLHV9lChoBmgJaA9DCAjHLHuSy2lAlIaUUpRoFU1WAmgWR0CURg2zfJmvdX2UKGgGaAloD0MIrP2d7dETS8CUhpRSlGgVTSICaBZHQJRK4E6kqMF1fZQoaAZoCWgPQwi5wrtcRBBkQJSGlFKUaBVNxQJoFkdAlEvrlaKUFHV9lChoBmgJaA9DCFlQGJTpXG1AlIaUUpRoFU0gAmgWR0CUTZjdpItldX2UKGgGaAloD0MIIsMq3kjFZkCUhpRSlGgVTcICaBZHQJRS3fVI7Nl1fZQoaAZoCWgPQwhiSbn7HBlUwJSGlFKUaBVNOQJoFkdAlFMje40/GHV9lChoBmgJaA9DCMoWSbvR52ZAlIaUUpRoFU1yAmgWR0CUVY3EyckMdX2UKGgGaAloD0MIV3xD4bNxY0CUhpRSlGgVTfwCaBZHQJRgwJ9iMHd1fZQoaAZoCWgPQwgsuvWaHjdnQJSGlFKUaBVNogJoFkdAlGDqR+z+m3V9lChoBmgJaA9DCFfsL7snM2ZAlIaUUpRoFU2WAmgWR0CUZTxAB1cMdX2UKGgGaAloD0MID7iumJHQYUCUhpRSlGgVTesCaBZHQJRxhltj0+V1fZQoaAZoCWgPQwjEr1jDxZtpQJSGlFKUaBVNvgJoFkdAlHID3h4t6HV9lChoBmgJaA9DCArbT8b4QFXAlIaUUpRoFU2oAmgWR0CUc88sMAmzdX2UKGgGaAloD0MIRgpl4WuYY0CUhpRSlGgVTf0CaBZHQJR18ojOcDt1fZQoaAZoCWgPQwgUQDGyZApawJSGlFKUaBVNwwJoFkdAlHYBIWgvlHV9lChoBmgJaA9DCMWsF0M5clnAlIaUUpRoFU2XAmgWR0CUetk3juKGdX2UKGgGaAloD0MIs5quJzojaUCUhpRSlGgVTYcCaBZHQJR6+2UjcEh1fZQoaAZoCWgPQwjtYprpXqldwJSGlFKUaBVNJQNoFkdAlH3bpu/DcnV9lChoBmgJaA9DCHvXoC+9jGhAlIaUUpRoFU20AmgWR0CUf+rQPZqVdX2UKGgGaAloD0MIrWpJR7luaUCUhpRSlGgVTTkCaBZHQJSAcSPEKmd1fZQoaAZoCWgPQwh+xK9Yw+UDQJSGlFKUaBVN6ANoFkdAlIQNVBD5TXV9lChoBmgJaA9DCB8tzhjmnkzAlIaUUpRoFU3WAmgWR0CUh1h0hePadWUu"
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 14844,
78
+ "buffer_size": 1000000,
79
+ "batch_size": 64,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.999,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd2adad45e0>",
91
+ "add": "<function ReplayBuffer.add at 0x7fd2adad4670>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7fd2adad4700>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd2adad4790>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc_data object at 0x7fd2adacc870>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 62500,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
114
+ },
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
DQN-MlpPolicy-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7e0edf24213261c7fab66fe6cff600c24e6987c2f72ea065aecd4edfcfbbe0
3
+ size 44911
DQN-MlpPolicy-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1afe4f3dd976f293359a226a9c248f926ad3b207753fd4b7db08fa66a48c944
3
+ size 44033
DQN-MlpPolicy-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-MlpPolicy-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 113.79 +/- 125.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fd2ada77790>", "_build": "<function DQNPolicy._build at 0x7fd2ada77820>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd2ada778b0>", "forward": "<function DQNPolicy.forward at 0x7fd2ada77940>", "_predict": "<function DQNPolicy._predict at 0x7fd2ada779d0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd2ada77a60>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd2ada77af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2ada6dfc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA6meL/+CWDTf46QSyN+F+suXihjsMIRV4ZHkhu/Fmb795iqIdIzqhHt55YKS0cI/NAjruxXnvIcgmdRCuw3B2/1N1AJR37NtY0xN2NglmCAgPQ1HMFRfC/5T6yOBV0KflXWBKGiAL+V6xrQHoPXdmzqNtK2l2CHEXUTmk0kVgmlPNfu4GmaruPOfsVz123xSahqNUPTv+1LlvWi0yfKvK8jX8XgORWVnxztwsPZErABBaIBw7LvkK80hv0CVMBRx87gLqqnLIfNt6MwR/5E3plgjT2tLNdsPNPUvSD/jyiUI2DeuB5/oGFD+XtRltQbTD8IcFasP11VNQYzyIF08caLJ+mZ2xtIfzieUtbYQQSlAM8eWoXoPAgH7Ol/Y7TPz32j6KQdRByQOTsNJF9Xc2tfmX7S9ecTB8wx+I1F7teJSr6BV3CYZg5tFi0n8dQoJ/WsV1lbAmafeyxeqrLyLGHQpp3rAnYXHZKeYVlomQCqaFiGD7gkjn4LzLpLmznJWz65DFNOmTknlqgpvHgBP/c/JmeG6xrCDlBBxZTcXSk1pUt0aN7VhME7XUeNgY5FTRUQGS46BkOgLRl/4kHO0aSti+ezD+A6b6K0mzNxhBDJTpQtfjXUqcLCCCnX0vJ3WS1Ea2r0X5AvsOYd+zD+BIdVTkQ+2kbwcVRjuwXhanOZT8pgYSARgRiv8ad2IciXAwJ5PLg47VWaf4RHnwq8ZWzaY4H/qSQhfmmuv9yhUV3Qozckyu/GvQyrosv0k+2t8siEWhVjZ3PlHEDa/1SlNN1HU7ciz9iK4g93t3E/Q++onxUeFwCm3uxCKnAuVqfe8I+jqHYuqSmKy9rwBogtYdik7JpGw7IHhMuq1ewMfTYTBHdxR8KDs+YJwXUs6t7CJzSEoT32AhQ9oM1rFVOTa4L5mrZACe8EZvNYM16uiRzLZKQ1Cq3Tuoe5CSjLiCKkSgdC5NGUx3vG3c5/9LYZdYsa+4lY+w5INc9rK1RgdDc4q1kFAZvFTHHnRPECPYkcX1IIDCZZXyS91NJ5/NitKtvyZ6DZP43Bv/Il1oeEjgy+gpZyyeMfbQo3UrkEVvI2PdkHKrAs1WeGvqsLS/PLOcfxOIe9ATvBf7fsmwgV5RYn/wVe77mE4LYLSWNt5aIQD7LMjj5ifvEa9Nwp+c5omYy3eMKoD+EXjV7lE4MSajh9LUCFEuMy50ers5UiYbSgJDDuvDDGnF08FbLwBs7cDbHYIMLFvqTe5m6+CfA2Oq3RY7fEHwwjWQwwXJP7XL5T5ndH9ZNKHwV6ynWHC812ZJ6pvx7c0iTYlNPdRPj3huFBKgFvrYI4C1aN/JXK8OL6JfBPFl1VBkzPzF+w6BcTrzlxZtz+Q5ZFgTj87nF3v2BKZWlDhrch+3+7jphZquod7g7rMAaX4xbpkBGbwQmPQVx6vy1N3KegtRF1T5YGlKEbZDeQVBJ4HQst9JgQ0vRDUY9Ku/4kFh7z1QqbbMldQb90S3/8FbCkvvopJAvH2t+C+prgiy/cLz2aKQCeD6R0WHX+xWWsNPWG/PiwhNP4KzmKmdIpyBUPDqKOaI/f20Ve5Psf31hJ3tEt4xwAF7YudlqS7QIXgWyJBJqeGbycdrbqWjuVd0yYWzlk0w8iULlbawKkKzhRTMRCEMnl0i08uQwQiWxbWGwgR9mq16LsD8J48qAiy0QjvrindJ76T3pKHQ1G5ElyctIYJRll7qLkOCBs14j+dGBYn6Bzf65UeKAUZwv3m7BEsSeG4nfXwMBX6YYv9/zMnMJTTPPHSTXCrmnjCevdI+tp4eaLtAEoKIZczAw3wdSyQ0q5vQwwZStVvhOT7n+r1uiLPszpu0X1lOnmMhg9q//u+BGjsx00tOi0g57HoARUN4djW24ru83UBPUvN/FdTPKx/E0AaAHs248yGbIqzyBxAA6VWusdI3PDb3z3IdCzfHTXMDeONBUSEdmETTxHCQMklIqxIpLVWtuGvhvROQOum45msZ1jLY5styfBRyINeL2WbFiOrA4eZbPTpSVWCuOB7/jVe1AUjI27rbDVSktHz5luIeFoM4RsuMMZhnItEAR4lZNPoH2UfizMIMYxnDXEB4f5S2gQMHWvgjEd4FkGQ2DfvFK/wSZRlAhgZomqjo9Bb5nHw5htC7BP+ue+P8NiG+PmTNIbUJFk/AHB4LC+TvUmCtKyNB7oA0YkBcmsrUvvMHvv8aNM4vdjkmH9fAfhD+fDETjeWYI8+9rgCvaJWikI2GIV1qpnjy9jqMJVVdqozTLLCObayIQ6N8fm3ALt4lgkjsZ3qGnNGTNxf4lUhkGqFj3VgoXiN2SkJaBCnJPDu/xybe9JM+RSb+gTS9zkXXcIcJ1PKxD3+tEnNbCspxDXyTPtgrRdK8v0k/enKuYlGWhgoBUyg0W4wCmxfKTf+NP6pdtU9rqXa6z1h+JQlwFthF+f4cc5d2fbt2PW5iJ1PkShnaBKfTph72ngTBU4MYA6naR7h9ocVHj7D3Fdp9gu/HvL9q5MhmlnyVv9TfNG53R14g5gaWlwZNafgP481xraU6qxpX1vL/qI1rWj/DBhyVxx9O5TyRXOpB11MwZcUWLg9XJSKLRRNA+xQglMPQqPLFnolUletIiUnFNks3MIWdgCac/xvmPyOsFa+U5ox43Di+gMfva0sbimcH+MVWSRVKe9uxHD6mOcepsYMXzic6LGN2z+3FdEKkAorrIKJgi4O9PkS2SkoUFzo8cpiB0gS00mhjwvxVtp6FBm8TQAU5313WcZ4Wtpih7mqgjTY53diOz80XOBET7C3BhOeXX+b7Gk6QU2qzB70eWM1g0I8wbwDJLkw5sbwAlowhzo0LIUcgiz/g0mtgZjWORYNzOznyVLrBqsM7sqdpw1qlNS3TcyiqFAPihApV+zilHcsp3e7/uFXhCtV4Kk0P0CKs4nhXPw3dIAYFErR0s+4IDDR/+TbarGbCT5Pv/YwZm6lYqrtfBYijWYKJNgOMe4p6/4/fq93zoVFFiNhZfI8mwVjZpbYB7eCpsewAyACSvwjrpcqreDzzDmcppLt4iNhUL8VuwvhDxdt9/Tqev8XwpkdfbB8WrrctcHBv1y+NIPuyz1R/DTcKnesrSh+4jBGYCqEghfwgkYmDpI9husoZ8bB8dAtBa5+BtITNbVrff2BU4wxvvnGfsdiU/FkNJC3P1o56j17en07snforxTqkX0GRRd/4LSy9m4NEsaAiLup50yoUG5Un/KmajIZ72jzT+9ocyOEg3o8eBRvu7zlPO9izNon5bnD7w0mTrIV0EX7QKixA3gCchgXR0lHwtSa8FqGvS+YulGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLMHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671560724314322750, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbxKz7AVeU+71tDPeUmCr4MFZI9RwoAPQAAAAAAAAAAGo2yPo1dYD8qUA6+h57GvbmMqjzPqom8AAAAAAAAAACwa1S+3e1qPvttHT1+T4+9EDgIvBDKqDwAAAAAAAAAAE0bIz6bWOk92MJpvUd2Cb5gQyo9nRTbvAAAAAAAAAAAtu1fvmJTNz9bCam9VEa1vSLNIrxOfqI6AAAAAAAAAABIcAa/3Ds3P8rqh73gMmu9f9vnvHYU47wAAAAAAAAAAOaPH74DdkY/YIkXvqU8yL3jVoC8Su9FugAAAAAAAAAAswu1PrPYXT8fLsi9N7uzvdy69DwKuaW7AAAAAAAAAADNx4c+Ih2YP2mDx72ru3m9WZEDPClIlbwAAAAAAAAAANZ8UL41oVw+EdglPeK6Nb3ZrMG88gQTOwAAAAAAAAAAQKLKvim1rD8ztta9vSV2vaKvD74i+D89AAAAAAAAAACz4cS+u/hnP1khBT4KhrS9XcICPajEVjwAAAAAAAAAAEAegz2lmUg/6bkcvs5d+72XbaC8UFRYPAAAAAAAAAAAJko+vrd9az4m2+Y94MG7vRdsgzzaaxS8AAAAAAAAAADLibS+HfcMP0KtvbxA+yi9giXkvNogcrwAAAAAAAAAAPM+6L1cO0+6YRHDsiGM+DFGGc26+j5rMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPpvKz5m4+Y+zuJKPZHILL6X4Y49QHTcPAAAAAAAAAAAY0SzPpPsYD++Khe+tAbuvd1usTywXtq8AAAAAAAAAAAt01S+oYpsPpbEDz0VB569FRkZvNUSkjwAAAAAAAAAAHO0Iz6biO89KjAavdpDGb6AvS897cUsvAAAAAAAAAAAgxVfvufVNz9cCam9olJ9vRjRI7wBfqI6AAAAAAAAAADeQwa/f5A3P8nqh71b8fu83oDcvHgU47wAAAAAAAAAAOALHr4vBkc/XokXvqOfkb25B4C8Xu5FugAAAAAAAAAAJoy1Ph1aXj9GQNe9YhrXvTDN9jzynWe8AAAAAAAAAACzSIg+GEqYP/L1vr3TqNS9AH8SPOXRdrwAAAAAAAAAAEbnUL7npl0+CqIpPRDymr0UmMK8h8KoOwAAAAAAAAAA6xvKvqLhrD+dAwC+Q+HPve4VEr5qSCo9AAAAAAAAAAD6jMW+r3poP1ghBT4C0nu9HBMAPbrEVjwAAAAAAAAAADM9hj2jTkk/yvogvjoPA74h1qW8qpMlPAAAAAAAAAAAc3A/vnyabT41AOM9evvXvf0hhzwNEUK8AAAAAAAAAAB2arS+7jMNP2WMbLyEJYK94RfevL+mj7sAAAAAAAAAAPM+6L1cO0+6GzfPs/Dw2TGBGc26rgR1MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 2133, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwJKrWPx2ZUCUhpRSlIwBbJRNDQOMAXSUR0CTeIFlCkXUdX2UKGgGaAloD0MIAz4/jBCuVUCUhpRSlGgVTegDaBZHQJN8F3W4EwF1fZQoaAZoCWgPQwgWTz3SYLxlQJSGlFKUaBVNvQJoFkdAk3z8qOLiuXV9lChoBmgJaA9DCJhp+1dWvGFAlIaUUpRoFU3DA2gWR0CTfQ/6fra/dX2UKGgGaAloD0MIn8vUJPieYECUhpRSlGgVTQQDaBZHQJN9Es8PnSx1fZQoaAZoCWgPQwiun/6zZsdqQJSGlFKUaBVN0wJoFkdAk5C/420iQnV9lChoBmgJaA9DCPDAAMIHUWVAlIaUUpRoFU18AmgWR0CTkURLbpNcdX2UKGgGaAloD0MIhnXj3REKcECUhpRSlGgVTRECaBZHQJOR2hg3Lmp1fZQoaAZoCWgPQwhcrn5sEiVjQJSGlFKUaBVNjwJoFkdAk5KYIWxhUnV9lChoBmgJaA9DCMbbSq9NmGpAlIaUUpRoFU3TAmgWR0CTl2D/lyR0dX2UKGgGaAloD0MIevzepr8ZZ0CUhpRSlGgVTcICaBZHQJOZEibDuSh1fZQoaAZoCWgPQwgQXOUJhNpXwJSGlFKUaBVN2QJoFkdAk5oM1Gb1AnV9lChoBmgJaA9DCM7/q44cN0/AlIaUUpRoFU1uAmgWR0CToNsoUi6hdX2UKGgGaAloD0MI7KLogY8AZ0CUhpRSlGgVTeQCaBZHQJOiacy31Bd1fZQoaAZoCWgPQwgMrrmjf35mQJSGlFKUaBVNcwNoFkdAk6LFxffGdnV9lChoBmgJaA9DCGahndMsDGVAlIaUUpRoFU3cA2gWR0CTotiuuA7QdX2UKGgGaAloD0MIIoleRrGYakCUhpRSlGgVTWMCaBZHQJOkjdCVryl1fZQoaAZoCWgPQwgvMZbpF7RlQJSGlFKUaBVN3gNoFkdAk6TPO6d1+3V9lChoBmgJaA9DCOj6Phwk0EnAlIaUUpRoFU2oAmgWR0CTp6FqzqrzdX2UKGgGaAloD0MIrp6T3rcnYECUhpRSlGgVTd4CaBZHQJOqNZid8Rd1fZQoaAZoCWgPQwjxDvCkhUlpQJSGlFKUaBVN8gJoFkdAk6pkc81XNnV9lChoBmgJaA9DCLiU88Xea2lAlIaUUpRoFU1WAmgWR0CTsvYyO7xvdX2UKGgGaAloD0MIVWe1wJ6ja0CUhpRSlGgVTWwCaBZHQJO0y4gA6uJ1fZQoaAZoCWgPQwjXvoBeOHtpQJSGlFKUaBVNyAJoFkdAk7yCxFAmiXV9lChoBmgJaA9DCJ33/3FCumpAlIaUUpRoFU0LA2gWR0CTwNUUfxMGdX2UKGgGaAloD0MIzqrP1VZFZkCUhpRSlGgVTcUCaBZHQJPBnAxi5NJ1fZQoaAZoCWgPQwjpKt1dZ0RoQJSGlFKUaBVNvQJoFkdAk8PrmdRR/HV9lChoBmgJaA9DCLXgRV9BHmRAlIaUUpRoFU0mA2gWR0CTyt9jgAIZdX2UKGgGaAloD0MIrTO+L67oZkCUhpRSlGgVTZkCaBZHQJPK8acZtN11fZQoaAZoCWgPQwjOwTOhSTljQJSGlFKUaBVN/wJoFkdAk9NtKdxyXHV9lChoBmgJaA9DCGUdjq7Sb2VAlIaUUpRoFU0eA2gWR0CT04LS/j82dX2UKGgGaAloD0MI3bHYJpWUZkCUhpRSlGgVTQgDaBZHQJPUS74BV+91fZQoaAZoCWgPQwjaHVIMkHBiQJSGlFKUaBVN8gJoFkdAk9UzQeFL4HV9lChoBmgJaA9DCE2EDU+vPmpAlIaUUpRoFU3uAmgWR0CT1UNnGsFMdX2UKGgGaAloD0MIz0wwnGsDVsCUhpRSlGgVTakCaBZHQJPYWDyvs7d1fZQoaAZoCWgPQwhkdha9U1ZjQJSGlFKUaBVNAwNoFkdAk96/ATIvJ3V9lChoBmgJaA9DCHhDGhW4umRAlIaUUpRoFU2eA2gWR0CT5hVymygPdX2UKGgGaAloD0MI91j60AVXY0CUhpRSlGgVTecCaBZHQJPsjiqABkt1fZQoaAZoCWgPQwgZy/RLRCdiQJSGlFKUaBVNEgNoFkdAk+3sAeaKDXV9lChoBmgJaA9DCI4FhUGZjmNAlIaUUpRoFU2EAmgWR0CT8m6+nIhhdX2UKGgGaAloD0MIipRm8zj0ZkCUhpRSlGgVTZoCaBZHQJP1Dr5ZbIN1fZQoaAZoCWgPQwiOXDelvJJpQJSGlFKUaBVNfQJoFkdAk/UoSYgJTnV9lChoBmgJaA9DCN/hdmhYg1tAlIaUUpRoFU3jAmgWR0CT9aLOiWVvdX2UKGgGaAloD0MIS8gHPZv8UsCUhpRSlGgVTTsCaBZHQJP2uwkgOjJ1fZQoaAZoCWgPQwg+PiE7byRqQJSGlFKUaBVNSAJoFkdAk/dy5uqFRHV9lChoBmgJaA9DCCFWf4Shf3BAlIaUUpRoFU2mAWgWR0CT+Ded07r+dX2UKGgGaAloD0MIYRdFD3weZUCUhpRSlGgVTUACaBZHQJP8UyGi5/d1fZQoaAZoCWgPQwjcRgN4C8RqQJSGlFKUaBVNbwJoFkdAk/7ZuuRs/XV9lChoBmgJaA9DCB2wq8lT0EfAlIaUUpRoFU1xAmgWR0CT/4BPbfxddX2UKGgGaAloD0MI2xZlNshtZ0CUhpRSlGgVTWgCaBZHQJP/my5Zr591fZQoaAZoCWgPQwjOqWQAKNhmQJSGlFKUaBVNmgJoFkdAlAIRxkupTHV9lChoBmgJaA9DCLjlIynpdUHAlIaUUpRoFU0rAmgWR0CUA6b3oLXudX2UKGgGaAloD0MIPBHEeThZbUCUhpRSlGgVTfYBaBZHQJQFzRplBhR1fZQoaAZoCWgPQwidvp6vWb9oQJSGlFKUaBVNLQJoFkdAlA7KZH/cWXV9lChoBmgJaA9DCPKaV3VWlW1AlIaUUpRoFU3gAWgWR0CUE/QA+6iCdX2UKGgGaAloD0MILiC0Hj5tZUCUhpRSlGgVTUgCaBZHQJQX0rUb1h91fZQoaAZoCWgPQwjZImk3egJrQJSGlFKUaBVNNwJoFkdAlBhgxFiKBXV9lChoBmgJaA9DCFfMCG8PRVjAlIaUUpRoFU25AmgWR0CUGLtw71ZldX2UKGgGaAloD0MIEmiwqfM0ZkCUhpRSlGgVTYkCaBZHQJQaHDGcWj51fZQoaAZoCWgPQwialIJur+JlQJSGlFKUaBVNwgJoFkdAlCAGgi/wiXV9lChoBmgJaA9DCMLdWbtt8mlAlIaUUpRoFU1wAmgWR0CUI7UlzEJjdX2UKGgGaAloD0MIfCb75+nCaUCUhpRSlGgVTfwCaBZHQJQkOIRAbAF1fZQoaAZoCWgPQwjn4JnQpPBnQJSGlFKUaBVNSgJoFkdAlCRVghKUV3V9lChoBmgJaA9DCIWxhSCHf2dAlIaUUpRoFU24AmgWR0CUK4oWHk92dX2UKGgGaAloD0MICJRNucILaECUhpRSlGgVTb4CaBZHQJQrxjLB9Cx1fZQoaAZoCWgPQwiVEKyqlx5pQJSGlFKUaBVNewJoFkdAlCyxtP557nV9lChoBmgJaA9DCHLBGfx9zmFAlIaUUpRoFU3PAmgWR0CUL2K+SKWLdX2UKGgGaAloD0MI6KIh45GBcECUhpRSlGgVTaYBaBZHQJQyCDIzWPN1fZQoaAZoCWgPQwgmjdE6qj5iQJSGlFKUaBVNxwJoFkdAlDMINy5qd3V9lChoBmgJaA9DCNqOqbuymUlAlIaUUpRoFU3oA2gWR0CUMyX3QD3edX2UKGgGaAloD0MIBaipZesSbECUhpRSlGgVTZQCaBZHQJQ4GDzyz5Z1fZQoaAZoCWgPQwgs1nCRexpqQJSGlFKUaBVNZgJoFkdAlDwgyqMm4XV9lChoBmgJaA9DCNodUgyQ0DzAlIaUUpRoFU2CAmgWR0CUP9DhtLtedX2UKGgGaAloD0MISvHxCVk8ZECUhpRSlGgVTasCaBZHQJRA1hiLEUF1fZQoaAZoCWgPQwh2UInrGKJRwJSGlFKUaBVNSwJoFkdAlEHnZXdTHnV9lChoBmgJaA9DCNBk/zwNN25AlIaUUpRoFU2ZAWgWR0CUQtjKPn0TdX2UKGgGaAloD0MIsCDNWLS/Z0CUhpRSlGgVTTADaBZHQJRFQ1n/T9d1fZQoaAZoCWgPQwhnmNpSh+5rQJSGlFKUaBVNTgJoFkdAlEVPa11GLHV9lChoBmgJaA9DCAjHLHuSy2lAlIaUUpRoFU1WAmgWR0CURg2zfJmvdX2UKGgGaAloD0MIrP2d7dETS8CUhpRSlGgVTSICaBZHQJRK4E6kqMF1fZQoaAZoCWgPQwi5wrtcRBBkQJSGlFKUaBVNxQJoFkdAlEvrlaKUFHV9lChoBmgJaA9DCFlQGJTpXG1AlIaUUpRoFU0gAmgWR0CUTZjdpItldX2UKGgGaAloD0MIIsMq3kjFZkCUhpRSlGgVTcICaBZHQJRS3fVI7Nl1fZQoaAZoCWgPQwhiSbn7HBlUwJSGlFKUaBVNOQJoFkdAlFMje40/GHV9lChoBmgJaA9DCMoWSbvR52ZAlIaUUpRoFU1yAmgWR0CUVY3EyckMdX2UKGgGaAloD0MIV3xD4bNxY0CUhpRSlGgVTfwCaBZHQJRgwJ9iMHd1fZQoaAZoCWgPQwgsuvWaHjdnQJSGlFKUaBVNogJoFkdAlGDqR+z+m3V9lChoBmgJaA9DCFfsL7snM2ZAlIaUUpRoFU2WAmgWR0CUZTxAB1cMdX2UKGgGaAloD0MID7iumJHQYUCUhpRSlGgVTesCaBZHQJRxhltj0+V1fZQoaAZoCWgPQwjEr1jDxZtpQJSGlFKUaBVNvgJoFkdAlHID3h4t6HV9lChoBmgJaA9DCArbT8b4QFXAlIaUUpRoFU2oAmgWR0CUc88sMAmzdX2UKGgGaAloD0MIRgpl4WuYY0CUhpRSlGgVTf0CaBZHQJR18ojOcDt1fZQoaAZoCWgPQwgUQDGyZApawJSGlFKUaBVNwwJoFkdAlHYBIWgvlHV9lChoBmgJaA9DCMWsF0M5clnAlIaUUpRoFU2XAmgWR0CUetk3juKGdX2UKGgGaAloD0MIs5quJzojaUCUhpRSlGgVTYcCaBZHQJR6+2UjcEh1fZQoaAZoCWgPQwjtYprpXqldwJSGlFKUaBVNJQNoFkdAlH3bpu/DcnV9lChoBmgJaA9DCHvXoC+9jGhAlIaUUpRoFU20AmgWR0CUf+rQPZqVdX2UKGgGaAloD0MIrWpJR7luaUCUhpRSlGgVTTkCaBZHQJSAcSPEKmd1fZQoaAZoCWgPQwh+xK9Yw+UDQJSGlFKUaBVN6ANoFkdAlIQNVBD5TXV9lChoBmgJaA9DCB8tzhjmnkzAlIaUUpRoFU3WAmgWR0CUh1h0hePadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14844, "buffer_size": 1000000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.999, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fd2adad45e0>", "add": "<function ReplayBuffer.add at 0x7fd2adad4670>", "sample": "<function ReplayBuffer.sample at 0x7fd2adad4700>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd2adad4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2adacc870>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 62500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (228 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 113.78925566437431, "std_reward": 125.13453616892147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T19:08:16.402714"}