reginaboateng commited on
Commit
8e73230
1 Parent(s): df2facb

Upload BertForTokenClassification

Browse files
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - bert
4
+ - adapter-transformers
5
+ - adapterhub:pico_ner
6
+ datasets:
7
+ - reginaboateng/cleaned_ebmnlp_pico
8
+ ---
9
+
10
+ # Adapter `reginaboateng/Compacter_PubmedBert_adapter_ner_pico_for_classification_task` for microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
11
+
12
+ An [adapter](https://adapterhub.ml) for the `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext` model that was trained on the [pico_ner](https://adapterhub.ml/explore/pico_ner/) dataset.
13
+
14
+ This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
15
+
16
+ ## Usage
17
+
18
+ First, install `adapter-transformers`:
19
+
20
+ ```
21
+ pip install -U adapter-transformers
22
+ ```
23
+ _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
24
+
25
+ Now, the adapter can be loaded and activated like this:
26
+
27
+ ```python
28
+ from transformers import AutoAdapterModel
29
+
30
+ model = AutoAdapterModel.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext")
31
+ adapter_name = model.load_adapter("reginaboateng/Compacter_PubmedBert_adapter_ner_pico_for_classification_task", source="hf", set_active=True)
32
+ ```
33
+
34
+ ## Architecture & Training
35
+
36
+ <!-- Add some description here -->
37
+
38
+ ## Evaluation results
39
+
40
+ <!-- Add some description here -->
41
+
42
+ ## Citation
43
+
44
+ <!-- Add some description here -->
adapter_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "factorized_phm_W": true,
6
+ "factorized_phm_rule": false,
7
+ "hypercomplex_nonlinearity": "glorot-uniform",
8
+ "init_weights": "bert",
9
+ "inv_adapter": null,
10
+ "inv_adapter_reduction_factor": null,
11
+ "is_parallel": false,
12
+ "learn_phm": true,
13
+ "leave_out": [],
14
+ "ln_after": false,
15
+ "ln_before": false,
16
+ "mh_adapter": true,
17
+ "non_linearity": "gelu",
18
+ "original_ln_after": true,
19
+ "original_ln_before": false,
20
+ "output_adapter": true,
21
+ "phm_bias": true,
22
+ "phm_c_init": "normal",
23
+ "phm_dim": 4,
24
+ "phm_init_range": 0.0001,
25
+ "phm_layer": true,
26
+ "phm_rank": 1,
27
+ "reduction_factor": 32,
28
+ "residual_before_ln": true,
29
+ "scaling": 1.0,
30
+ "shared_W_phm": false,
31
+ "shared_phm_rule": true,
32
+ "use_gating": false
33
+ },
34
+ "hidden_size": 768,
35
+ "model_class": "BertForTokenClassification",
36
+ "model_name": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
37
+ "model_type": "bert",
38
+ "name": "pico_ner",
39
+ "version": "3.2.1"
40
+ }
head_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": null,
3
+ "hidden_size": 768,
4
+ "label2id": {
5
+ "LABEL_0": 0,
6
+ "LABEL_1": 1,
7
+ "LABEL_2": 2,
8
+ "LABEL_3": 3
9
+ },
10
+ "model_class": "BertForTokenClassification",
11
+ "model_name": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
12
+ "model_type": "bert",
13
+ "name": null,
14
+ "num_labels": 4,
15
+ "version": "3.2.1"
16
+ }
pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3982e5748c9128b8f794e40fc3f221570f47dea91061ab3c1586d0f3c4a38a
3
+ size 278449
pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989d611f4c1ee669c8e03d95e44d58afe6d84037eedd83e4b8976b724288b79a
3
+ size 13395