{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b66c29f4c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b66c29f4ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b66c29f4d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b66c29f4dc0>", "_build": "<function ActorCriticPolicy._build at 0x7b66c29f4e50>", "forward": "<function ActorCriticPolicy.forward at 0x7b66c29f4ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b66c29f4f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b66c29f5000>", "_predict": "<function ActorCriticPolicy._predict at 0x7b66c29f5090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b66c29f5120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b66c29f51b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b66c29f5240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b66c2990240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720280235322175622, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACCwK74Fo7W7uBSDPqXglL2q2Ge+ynSLvgAAgD8AAIA/mqXJPMMJerors5u66z/9Ne9bobqaZrQ5AACAPwAAgD8aEIw90o6HPtlCHrum066+gpZvvI/cgzwAAAAAAAAAAJr7eD3X4wq5FSOGu7ocmDisUQi7GMkSOgAAgD8AAIA/msO1PfYYCbqGWiQ6hPrNND4bDrtS/0C5AACAPwAAAABNPkA99gRluqLBVjkAA40yi3COugDHd7gAAIA/AACAP3P6i72PDmi6p0GKuwyq8LYOJGM7sF2gOgAAgD8AAIA/Dc0XvqyRpT+FjSW/4r6nvhzlK75QjZ6+AAAAAAAAAAAzCL09j943ukKbd7qmvdM1Ky+SO45kkDkAAIA/AACAP7O9bD17vp+6ziB3u1EwiDjEV+W5jqoFOgAAgD8AAIA/ANaAPOHMhLoupjw7nC6NttsP+znifFm6AACAPwAAgD9Neca9jyJLuogN57oA3De0/HZwu2t7BjoAAIA/AAAAAABYZbtSWLi5oM8OOvGq4zRiShI7IoQluQAAgD8AAIA/887mPYUTp7mouUS7vI1htXtbIbm9lmU6AAAAAAAAgD+z8FO9w0UZOTL4TrqSnau1C2NZO+gQfTkAAIA/AACAP80bfD0pxH+6tgPwOsZ50jUGjho7WTgMugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNhKFIuoP2MAWyUTegDjAF0lEdAlZgQs5GSZHV9lChoBkdAYBQ4mTkhimgHTegDaAhHQJWb8hpxm051fZQoaAZHQGZ8Epqh11ZoB03oA2gIR0CVnbydWhh6dX2UKGgGR0BkguzKLbYcaAdN6ANoCEdAlaB1oL5RCXV9lChoBkdAZMwVSGahH2gHTegDaAhHQJWvPENvwVl1fZQoaAZHQGYUGwRoRI1oB03oA2gIR0CVt0Fx4ptrdX2UKGgGR0BhT+9QGfPHaAdN6ANoCEdAlbrj1GsmwHV9lChoBkdAY9YyHmA9V2gHTegDaAhHQJW8tAgPmPp1fZQoaAZHQGV1iBXjlxRoB03oA2gIR0CVvc41xbSrdX2UKGgGR0BiVwcWCVbBaAdN6ANoCEdAlb6Uyk9EC3V9lChoBkdAY7mEQGwA2mgHTegDaAhHQJXD8tK7I1d1fZQoaAZHQGBwN1ZDArRoB03oA2gIR0CVxAL7XQMQdX2UKGgGR0Bg6tMPBi1BaAdN6ANoCEdAlcVuFlCkXXV9lChoBkdAYsv65Xlr/WgHTegDaAhHQJXizVe8f3h1fZQoaAZHQGPZQudwvQFoB03oA2gIR0CV5Gmx+rlvdX2UKGgGR0BmP1DhLoOhaAdN6ANoCEdAleccNMGorHV9lChoBkdAZovIf8uSOmgHTegDaAhHQJXoOxNZeRh1fZQoaAZHQGSAoi9qUNdoB03oA2gIR0CV7IV2Rq46dX2UKGgGR0Bk72+ueSSvaAdN6ANoCEdAle6Y8uBczXV9lChoBkdAYEdIsAeaKGgHTegDaAhHQJXxbxri2lV1fZQoaAZHQGLTJNsWO6xoB03oA2gIR0CV/nV+7UXpdX2UKGgGR0Bjj/EETxoaaAdN6ANoCEdAlgfVfE4vOHV9lChoBkdAYcnsTnJT2mgHTegDaAhHQJYNqQgcLjR1fZQoaAZHQGPGKEeyRjloB03oA2gIR0CWEKnzQNTcdX2UKGgGR0BhYAAXEZR9aAdN6ANoCEdAlhJtZJTVD3V9lChoBkdAYwlk078vVWgHTegDaAhHQJYTrP2PDHh1fZQoaAZHQGKizsIE8q5oB03oA2gIR0CWGYnNgSezdX2UKGgGR0BnlklZ5iVjaAdN6ANoCEdAlhmdhqj8DXV9lChoBkdAZj2syzollmgHTegDaAhHQJYbQp1A7gd1fZQoaAZHv/UtkFwDNhVoB0ubaAhHQJYcm5xzaK11fZQoaAZHQF2M4NI9TxZoB03oA2gIR0CWNnDzAeq8dX2UKGgGR0BlmXsHB1s+aAdN6ANoCEdAljgL3XZoPHV9lChoBkdAMEnZsbedkWgHS/FoCEdAljmy1uzhP3V9lChoBkdATlEG/vfCRGgHS9doCEdAljntcKPXCnV9lChoBkdAZJX/ustCiWgHTegDaAhHQJY6jtLL6k91fZQoaAZHQGM3XOObRWtoB03oA2gIR0CWO5+717IDdX2UKGgGR0BhrJpcophGaAdN6ANoCEdAlkCE9IPK+3V9lChoBkdAWSJhrnDBM2gHTegDaAhHQJZC0wYcebN1fZQoaAZHQF/dFuNxVABoB03oA2gIR0CWRi+xnnMddX2UKGgGR0BFSueJ53TvaAdL3WgIR0CWSAe05U97dX2UKGgGR0BFFMXrMTviaAdL22gIR0CWSJ1ie/YbdX2UKGgGR0BhdDBAOavzaAdN6ANoCEdAllD0oOQQtnV9lChoBkdAY5VcD8tPHmgHTegDaAhHQJZYx39rGip1fZQoaAZHQGKZpqqOtGNoB03oA2gIR0CWXGX0Gu9wdX2UKGgGR0BgbW7rcCYDaAdN6ANoCEdAll4gxWT5f3V9lChoBkdAZUcjEehf0GgHTegDaAhHQJZfNF4LThJ1fZQoaAZHQGFHybQTmGNoB03oA2gIR0CWZcClabF1dX2UKGgGR0BnGCfOD8LsaAdN6ANoCEdAlmjhTbWVeXV9lChoBkdAZnU+sYEW7GgHTegDaAhHQJaFFq1w5vN1fZQoaAZHQGZjC1Z1V5toB03oA2gIR0CWhrJtBOYZdX2UKGgGR0BkX4oG6f8NaAdN6ANoCEdAloikl/pdKXV9lChoBkdAYxOMmWt2cWgHTegDaAhHQJaKTVCojwB1fZQoaAZHQEkOGC7K7qZoB0vgaAhHQJaKg3Ov+wV1fZQoaAZHQGLyL92ovSNoB03oA2gIR0CWjhyRjjJddX2UKGgGR0BgJjXFtKqXaAdN6ANoCEdAlo/iJCSid3V9lChoBkdAYDFqjafzz2gHTegDaAhHQJaSaIRAbAF1fZQoaAZHQGZY3Sa3I+5oB03oA2gIR0CWk73V09yMdX2UKGgGR0BkCeV3Ux20aAdN6ANoCEdAlpRPEn9ehXV9lChoBkdAYTqLsKLKm2gHTegDaAhHQJac1gOSW7h1fZQoaAZHQGGzcP4EfT1oB03oA2gIR0CWpcWHk92YdX2UKGgGR0BlyCkhzNliaAdN6ANoCEdAlqrlX/5tWXV9lChoBkdAZrW8DB/I82gHTegDaAhHQJatZT3qRlp1fZQoaAZHQGT1GFBY3ehoB03oA2gIR0CWroa4c3l0dX2UKGgGR0Bg13KfWcz7aAdN6ANoCEdAlrVSg5BC2XV9lChoBkdAQxq9bor4FmgHS85oCEdAlreozBRAKXV9lChoBkdAZQPt5UtI1GgHTegDaAhHQJbRnf642CN1fZQoaAZHQGllVh9b5dpoB03oA2gIR0CW0xrxiG34dX2UKGgGR0BmcwVKwpvxaAdN6ANoCEdAltTcdYGMXXV9lChoBkdAXRwjOcDr7mgHTegDaAhHQJbXBtCRfWt1fZQoaAZHQGdNSvs7dSFoB03oA2gIR0CW10gaFVT8dX2UKGgGR0BjGD+3pfQbaAdN6ANoCEdAltuczQ/oq3V9lChoBkdAYeqwjdHlO2gHTegDaAhHQJbdxNqQA+91fZQoaAZHQGdcyV4X40xoB03oA2gIR0CW4Q8XenAJdX2UKGgGR0BnA5J7LMcIaAdN6ANoCEdAluJmG7Bfr3V9lChoBkdAY7qHsTnJT2gHTegDaAhHQJbjB3A2ycF1fZQoaAZHQGQaCw8nuzBoB03oA2gIR0CW63+W4Vh1dX2UKGgGR0BmUOHP/rB1aAdN6ANoCEdAlvO5eE7GN3V9lChoBkdAZNPc4YJmd2gHTegDaAhHQJb5brfLs8h1fZQoaAZHQGJdICuEEkloB03oA2gIR0CW+ppAUtZndX2UKGgGR0Bg1DWmP5pKaAdN6ANoCEdAlwHVbqyGBXV9lChoBkdAYBAt5D7ZWmgHTegDaAhHQJcEZ7laKUF1fZQoaAZHQGIJHOKO1fFoB03oA2gIR0CXIr0g8r7PdX2UKGgGR0BjXl0o0ALiaAdN6ANoCEdAlyR5PhybQXV9lChoBkdAZ6JHd43WF2gHTegDaAhHQJcmmIGhVVB1fZQoaAZHQGPcKQA+6iFoB03oA2gIR0CXKHGipNsWdX2UKGgGR0Bg7fLFGXolaAdN6ANoCEdAlyisi8nNPnV9lChoBkdAZUnmGM4tH2gHTegDaAhHQJcsuoegctJ1fZQoaAZHQGG6jcEeQuFoB03oA2gIR0CXLrTFERapdX2UKGgGR0BiyNTvRZ2ZaAdN6ANoCEdAlzF/Q4S6D3V9lChoBkdAUpp2aDwpfGgHS+doCEdAlzH6JVKf4HV9lChoBkdAZlgmBOHnEGgHTegDaAhHQJcy+hZha1V1fZQoaAZHQGXGsFMZgohoB03oA2gIR0CXM6Ww/xDtdX2UKGgGR0Bk9+Zof0VaaAdN6ANoCEdAlz1GzWwu/XV9lChoBkdAcYtHo5ggHWgHTaMBaAhHQJc/B9jPOY91fZQoaAZHQGVjYxUNrj5oB03oA2gIR0CXSILrHEMtdX2UKGgGR0BiKpI+W4ViaAdN6ANoCEdAl05S4Bmwq3V9lChoBkdAYXUR/3Fkx2gHTegDaAhHQJdPhydWhh91fZQoaAZHQGAi1PFefI1oB03oA2gIR0CXVoTcIqsmdX2UKGgGR0BkdTXBguyvaAdN6ANoCEdAl1kETURWcXV9lChoBkdAZboUiY9gW2gHTegDaAhHQJdhSMERrad1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |