rchrdgwr commited on
Commit
4725adc
1 Parent(s): 5b07fd2

Pushing fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:568
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What measures did the device manufacturer take to protect individuals
46
+ from unwanted tracking?
47
+ sentences:
48
+ - "Tailored to the target of the explanation. Explanations should be targeted to\
49
+ \ specific audiences and clearly state that audience. An explanation provided\
50
+ \ to the subject of a decision might differ from one provided to an advocate,\
51
+ \ or to a domain expert or decision maker. Tailoring should be assessed (e.g.,\
52
+ \ via user experience research). \n43\n NOTICE & \nEXPLANATION \nWHAT SHOULD\
53
+ \ BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated systems are\
54
+ \ meant to serve as a blueprint for the development of additional \ntechnical\
55
+ \ standards and practices that are tailored for particular sectors and contexts.\
56
+ \ \nTailored to the level of risk. An assessment should be done to determine the\
57
+ \ level of risk of the auto -"
58
+ - '7
59
+
60
+ • A device originally developed to help people track and find lost items has been
61
+ used as a tool by stalkers to trackvictims’ locations in violation of their privacy
62
+ and safet y. The device manufacturer took steps after release to
63
+
64
+ protect people from unwanted tracking by alerting people on their phones when
65
+ a device is found to be movingwith them over time and also by having the device
66
+ make an occasional noise, but not all phones are ableto receive the notification
67
+ and the devices remain a safety concern due to their misuse.
68
+
69
+ 8'
70
+ - '-
71
+
72
+ sonable expectations in a given context and with a focus on ensuring broad accessibility
73
+ and protecting the public from especially harm
74
+
75
+ -
76
+
77
+ ful impacts. In some cases, a human or other alternative may be re -
78
+
79
+ quired by law. You should have access to timely human consider -
80
+
81
+ ation and remedy by a fallback and escalation process if an automat -
82
+
83
+ ed system fails, it produces an error, or you would like to appeal or contest
84
+ its impacts on you. Human consideration and fallback should be accessible, equitable,
85
+ effective, maintained, accompanied by appropriate operator training, and should
86
+ not impose an unrea
87
+
88
+ -'
89
+ - source_sentence: Why is ongoing monitoring and mitigation important for automated
90
+ systems after deployment?
91
+ sentences:
92
+ - "-\ntest its impacts on you \nProportionate. The availability of human consideration\
93
+ \ and fallback, along with associated training and \nsafeguards against human\
94
+ \ bias, should be proportionate to the potential of the automated system to meaning\
95
+ \ -\nfully impact rights, opportunities, or access. Automated systems that have\
96
+ \ greater control over outcomes, provide input to high-stakes decisions, relate\
97
+ \ to sensitive domains, or otherwise have a greater potential to meaningfully\
98
+ \ impact rights, opportunities, or access should have greater availability (e.g.,\
99
+ \ staffing) and over\n-\nsight of human consideration and fallback mechanisms.\
100
+ \ \nAccessible. Mechanisms for human consideration and fallback, whether in-person,\
101
+ \ on paper, by phone, or"
102
+ - "algorithmic discrimination, avoid meaningful harm, and achieve equity goals.\
103
+ \ \nOngoing monitoring and mitigation. Automated systems should be regularly monitored\
104
+ \ to assess algo -\nrithmic discrimination that might arise from unforeseen interactions\
105
+ \ of the system with inequities not accounted for during the pre-deployment testing,\
106
+ \ changes to the system after deployment, or changes to the context of use or\
107
+ \ associated data. Monitoring and disparity assessment should be performed by\
108
+ \ the entity deploying or using the automated system to examine whether the system\
109
+ \ has led to algorithmic discrimina\n-"
110
+ - "The expectations for automated systems are meant to serve as a blueprint for\
111
+ \ the development of additional \ntechnical standards and practices that are tailored\
112
+ \ for particular sectors and contexts. \nOngoing monitoring. Automated systems\
113
+ \ should have ongoing monitoring procedures, including recalibra -\ntion procedures,\
114
+ \ in place to ensure that their performance does not fall below an acceptable\
115
+ \ level over time, \nbased on changing real-world conditions or deployment contexts,\
116
+ \ post-deployment modification, or unexpect -"
117
+ - source_sentence: What should be included in the measurement of the impact of risks
118
+ associated with automated systems?
119
+ sentences:
120
+ - "104 \n48\n HUMAN ALTERNATIVES, \nCONSIDERATION, AND \nFALLBACK \nWHAT SHOULD\
121
+ \ BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated systems are\
122
+ \ meant to serve as a blueprint for the development of additional \ntechnical\
123
+ \ standards and practices that are tailored for particular sectors and contexts.\
124
+ \ \nAn automated system should provide demonstrably effective mechanisms to opt\
125
+ \ out in favor of a human alterna -\ntive, where appropriate, as well as timely\
126
+ \ human consideration and remedy by a fallback system, with additional \nhuman\
127
+ \ oversight and safeguards for systems used in sensitive domains, and with training\
128
+ \ and assessment for any human-based portions of the system to ensure effectiveness."
129
+ - collection and use is legal and consistent with the expectations of the people
130
+ whose data is collected. User experience research should be conducted to confirm
131
+ that people understand what data is being collected about them and how it will
132
+ be used, and that this collection matches their expectations and desires.
133
+ - "-\nsurement of the impact of risks should be included and balanced such that\
134
+ \ high impact risks receive attention and mitigation proportionate with those\
135
+ \ impacts. Automated systems with the intended purpose of violating the safety\
136
+ \ of others should not be developed or used; systems with such safety violations\
137
+ \ as identified unin\n-\ntended consequences should not be used until the risk\
138
+ \ can be mitigated. Ongoing risk mitigation may necessi -\ntate rollback or significant\
139
+ \ modification to a launched automated system. \n18\n \n \n \n \n \n SAFE\
140
+ \ AND EFFECTIVE \nSYSTEMS \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe\
141
+ \ expectations for automated systems are meant to serve as a blueprint for the\
142
+ \ development of additional"
143
+ - source_sentence: What measures should be taken to avoid "mission creep" when identifying
144
+ goals for data collection?
145
+ sentences:
146
+ - 'narrow identified goals, to avoid "mission creep." Anticipated data collection
147
+ should be determined to be strictly necessary to the identified goals and should
148
+ be minimized as much as possible. Data collected based on these identified goals
149
+ and for a specific context should not be used in a different context without assessing
150
+ for new privacy risks and implementing appropriate mitigation measures, which
151
+ may include express consent. Clear timelines for data retention should be established,
152
+ with data deleted as soon as possible in accordance with legal or policy-based
153
+ limitations. Determined data retention timelines should be documented and justi
154
+
155
+ -
156
+
157
+ fied.'
158
+ - with more and more companies tracking the behavior of the American public, building
159
+ individual profiles based on this data, and using this granular-level information
160
+ as input into automated systems that further track, profile, and impact the American
161
+ public. Government agencies, particularly law enforcement agencies, also use and
162
+ help develop a variety of technologies that enhance and expand surveillance capabilities,
163
+ which similarly collect data used as input into other automated systems that directly
164
+ impact people’s lives. Federal law has not grown to address the expanding scale
165
+ of private data collection, or of the ability of governments at all levels to
166
+ access that data and leverage the means of private collection.
167
+ - "additional technical standards and practices that should be tailored for particular\
168
+ \ sectors and contexts. While \nexisting laws informed the development of the\
169
+ \ Blueprint for an AI Bill of Rights, this framework does not detail those laws\
170
+ \ beyond providing them as examples, where appropriate, of existing protective\
171
+ \ measures. This framework instead shares a broad, forward-leaning vision of recommended\
172
+ \ principles for automated system development and use to inform private and public\
173
+ \ involvement with these systems where they have the poten-tial to meaningfully\
174
+ \ impact rights, opportunities, or access. Additionall y, this framework does\
175
+ \ not analyze or"
176
+ - source_sentence: What types of data are considered sensitive according to the context
177
+ provided?
178
+ sentences:
179
+ - "Provide the public with mechanisms for appropriate and meaningful consent, access,\
180
+ \ and \ncontrol over their data \nUse-specific consent. Consent practices should\
181
+ \ not allow for abusive surveillance practices. Where data \ncollectors or automated\
182
+ \ systems seek consent, they should seek it for specific, narrow use contexts,\
183
+ \ for specif -\nic time durations, and for use by specific entities. Consent should\
184
+ \ not extend if any of these conditions change; consent should be re-acquired\
185
+ \ before using data if the use case changes, a time limit elapses, or data is\
186
+ \ trans\n-"
187
+ - and home, work, or school environmental data); or have the reasonable potential
188
+ to be used in ways that are likely to expose individuals to meaningful harm, such
189
+ as a loss of privacy or financial harm due to identity theft. Data and metadata
190
+ generated by or about those who are not yet legal adults is also sensitive, even
191
+ if not related to a sensitive domain. Such data includes, but is not limited to,
192
+ numerical, text, image, audio, or video data. “Sensitive domains” are those in
193
+ which activities being conducted can cause material harms, including signifi
194
+ - "that data to inform the results of the automated system and why such use will\
195
+ \ not violate any applicable laws. \nIn cases of high-dimensional and/or derived\
196
+ \ attributes, such justifications can be provided as overall \ndescriptions of\
197
+ \ the attribute generation process and appropriateness. \n19\n \n \n SAFE\
198
+ \ AND EFFECTIVE \nSYSTEMS \nWHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe\
199
+ \ expectations for automated systems are meant to serve as a blueprint for the\
200
+ \ development of additional \ntechnical standards and practices that are tailored\
201
+ \ for particular sectors and contexts. \nDerived data sources tracked and reviewed\
202
+ \ carefully. Data that is derived from other data through"
203
+ model-index:
204
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
205
+ results:
206
+ - task:
207
+ type: information-retrieval
208
+ name: Information Retrieval
209
+ dataset:
210
+ name: Unknown
211
+ type: unknown
212
+ metrics:
213
+ - type: cosine_accuracy@1
214
+ value: 0.7677725118483413
215
+ name: Cosine Accuracy@1
216
+ - type: cosine_accuracy@3
217
+ value: 0.8862559241706162
218
+ name: Cosine Accuracy@3
219
+ - type: cosine_accuracy@5
220
+ value: 0.9241706161137441
221
+ name: Cosine Accuracy@5
222
+ - type: cosine_accuracy@10
223
+ value: 0.981042654028436
224
+ name: Cosine Accuracy@10
225
+ - type: cosine_precision@1
226
+ value: 0.7677725118483413
227
+ name: Cosine Precision@1
228
+ - type: cosine_precision@3
229
+ value: 0.29541864139020535
230
+ name: Cosine Precision@3
231
+ - type: cosine_precision@5
232
+ value: 0.1848341232227488
233
+ name: Cosine Precision@5
234
+ - type: cosine_precision@10
235
+ value: 0.0981042654028436
236
+ name: Cosine Precision@10
237
+ - type: cosine_recall@1
238
+ value: 0.7677725118483413
239
+ name: Cosine Recall@1
240
+ - type: cosine_recall@3
241
+ value: 0.8862559241706162
242
+ name: Cosine Recall@3
243
+ - type: cosine_recall@5
244
+ value: 0.9241706161137441
245
+ name: Cosine Recall@5
246
+ - type: cosine_recall@10
247
+ value: 0.981042654028436
248
+ name: Cosine Recall@10
249
+ - type: cosine_ndcg@10
250
+ value: 0.8716745978729181
251
+ name: Cosine Ndcg@10
252
+ - type: cosine_mrr@10
253
+ value: 0.8371304445948993
254
+ name: Cosine Mrr@10
255
+ - type: cosine_map@100
256
+ value: 0.838229587684564
257
+ name: Cosine Map@100
258
+ - type: dot_accuracy@1
259
+ value: 0.7677725118483413
260
+ name: Dot Accuracy@1
261
+ - type: dot_accuracy@3
262
+ value: 0.8862559241706162
263
+ name: Dot Accuracy@3
264
+ - type: dot_accuracy@5
265
+ value: 0.9241706161137441
266
+ name: Dot Accuracy@5
267
+ - type: dot_accuracy@10
268
+ value: 0.981042654028436
269
+ name: Dot Accuracy@10
270
+ - type: dot_precision@1
271
+ value: 0.7677725118483413
272
+ name: Dot Precision@1
273
+ - type: dot_precision@3
274
+ value: 0.29541864139020535
275
+ name: Dot Precision@3
276
+ - type: dot_precision@5
277
+ value: 0.1848341232227488
278
+ name: Dot Precision@5
279
+ - type: dot_precision@10
280
+ value: 0.0981042654028436
281
+ name: Dot Precision@10
282
+ - type: dot_recall@1
283
+ value: 0.7677725118483413
284
+ name: Dot Recall@1
285
+ - type: dot_recall@3
286
+ value: 0.8862559241706162
287
+ name: Dot Recall@3
288
+ - type: dot_recall@5
289
+ value: 0.9241706161137441
290
+ name: Dot Recall@5
291
+ - type: dot_recall@10
292
+ value: 0.981042654028436
293
+ name: Dot Recall@10
294
+ - type: dot_ndcg@10
295
+ value: 0.8716745978729181
296
+ name: Dot Ndcg@10
297
+ - type: dot_mrr@10
298
+ value: 0.8371304445948993
299
+ name: Dot Mrr@10
300
+ - type: dot_map@100
301
+ value: 0.838229587684564
302
+ name: Dot Map@100
303
+ ---
304
+
305
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
306
+
307
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
308
+
309
+ ## Model Details
310
+
311
+ ### Model Description
312
+ - **Model Type:** Sentence Transformer
313
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
314
+ - **Maximum Sequence Length:** 512 tokens
315
+ - **Output Dimensionality:** 768 tokens
316
+ - **Similarity Function:** Cosine Similarity
317
+ <!-- - **Training Dataset:** Unknown -->
318
+ <!-- - **Language:** Unknown -->
319
+ <!-- - **License:** Unknown -->
320
+
321
+ ### Model Sources
322
+
323
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
324
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
325
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
326
+
327
+ ### Full Model Architecture
328
+
329
+ ```
330
+ SentenceTransformer(
331
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
332
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
333
+ (2): Normalize()
334
+ )
335
+ ```
336
+
337
+ ## Usage
338
+
339
+ ### Direct Usage (Sentence Transformers)
340
+
341
+ First install the Sentence Transformers library:
342
+
343
+ ```bash
344
+ pip install -U sentence-transformers
345
+ ```
346
+
347
+ Then you can load this model and run inference.
348
+ ```python
349
+ from sentence_transformers import SentenceTransformer
350
+
351
+ # Download from the 🤗 Hub
352
+ model = SentenceTransformer("sentence_transformers_model_id")
353
+ # Run inference
354
+ sentences = [
355
+ 'What types of data are considered sensitive according to the context provided?',
356
+ 'and home, work, or school environmental data); or have the reasonable potential to be used in ways that are likely to expose individuals to meaningful harm, such as a loss of privacy or financial harm due to identity theft. Data and metadata generated by or about those who are not yet legal adults is also sensitive, even if not related to a sensitive domain. Such data includes, but is not limited to, numerical, text, image, audio, or video data. “Sensitive domains” are those in which activities being conducted can cause material harms, including signifi',
357
+ 'Provide the public with mechanisms for appropriate and meaningful consent, access, and \ncontrol over their data \nUse-specific consent. Consent practices should not allow for abusive surveillance practices. Where data \ncollectors or automated systems seek consent, they should seek it for specific, narrow use contexts, for specif -\nic time durations, and for use by specific entities. Consent should not extend if any of these conditions change; consent should be re-acquired before using data if the use case changes, a time limit elapses, or data is trans\n-',
358
+ ]
359
+ embeddings = model.encode(sentences)
360
+ print(embeddings.shape)
361
+ # [3, 768]
362
+
363
+ # Get the similarity scores for the embeddings
364
+ similarities = model.similarity(embeddings, embeddings)
365
+ print(similarities.shape)
366
+ # [3, 3]
367
+ ```
368
+
369
+ <!--
370
+ ### Direct Usage (Transformers)
371
+
372
+ <details><summary>Click to see the direct usage in Transformers</summary>
373
+
374
+ </details>
375
+ -->
376
+
377
+ <!--
378
+ ### Downstream Usage (Sentence Transformers)
379
+
380
+ You can finetune this model on your own dataset.
381
+
382
+ <details><summary>Click to expand</summary>
383
+
384
+ </details>
385
+ -->
386
+
387
+ <!--
388
+ ### Out-of-Scope Use
389
+
390
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
391
+ -->
392
+
393
+ ## Evaluation
394
+
395
+ ### Metrics
396
+
397
+ #### Information Retrieval
398
+
399
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
400
+
401
+ | Metric | Value |
402
+ |:--------------------|:-----------|
403
+ | cosine_accuracy@1 | 0.7678 |
404
+ | cosine_accuracy@3 | 0.8863 |
405
+ | cosine_accuracy@5 | 0.9242 |
406
+ | cosine_accuracy@10 | 0.981 |
407
+ | cosine_precision@1 | 0.7678 |
408
+ | cosine_precision@3 | 0.2954 |
409
+ | cosine_precision@5 | 0.1848 |
410
+ | cosine_precision@10 | 0.0981 |
411
+ | cosine_recall@1 | 0.7678 |
412
+ | cosine_recall@3 | 0.8863 |
413
+ | cosine_recall@5 | 0.9242 |
414
+ | cosine_recall@10 | 0.981 |
415
+ | cosine_ndcg@10 | 0.8717 |
416
+ | cosine_mrr@10 | 0.8371 |
417
+ | **cosine_map@100** | **0.8382** |
418
+ | dot_accuracy@1 | 0.7678 |
419
+ | dot_accuracy@3 | 0.8863 |
420
+ | dot_accuracy@5 | 0.9242 |
421
+ | dot_accuracy@10 | 0.981 |
422
+ | dot_precision@1 | 0.7678 |
423
+ | dot_precision@3 | 0.2954 |
424
+ | dot_precision@5 | 0.1848 |
425
+ | dot_precision@10 | 0.0981 |
426
+ | dot_recall@1 | 0.7678 |
427
+ | dot_recall@3 | 0.8863 |
428
+ | dot_recall@5 | 0.9242 |
429
+ | dot_recall@10 | 0.981 |
430
+ | dot_ndcg@10 | 0.8717 |
431
+ | dot_mrr@10 | 0.8371 |
432
+ | dot_map@100 | 0.8382 |
433
+
434
+ <!--
435
+ ## Bias, Risks and Limitations
436
+
437
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
438
+ -->
439
+
440
+ <!--
441
+ ### Recommendations
442
+
443
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
444
+ -->
445
+
446
+ ## Training Details
447
+
448
+ ### Training Dataset
449
+
450
+ #### Unnamed Dataset
451
+
452
+
453
+ * Size: 568 training samples
454
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
455
+ * Approximate statistics based on the first 568 samples:
456
+ | | sentence_0 | sentence_1 |
457
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
458
+ | type | string | string |
459
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.09 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 118.73 tokens</li><li>max: 160 tokens</li></ul> |
460
+ * Samples:
461
+ | sentence_0 | sentence_1 |
462
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
463
+ | <code>What is the purpose of the AI Bill of Rights mentioned in the context?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
464
+ | <code>When was the Blueprint for an AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI B ILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
465
+ | <code>What is the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
466
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
467
+ ```json
468
+ {
469
+ "loss": "MultipleNegativesRankingLoss",
470
+ "matryoshka_dims": [
471
+ 768,
472
+ 512,
473
+ 256,
474
+ 128,
475
+ 64
476
+ ],
477
+ "matryoshka_weights": [
478
+ 1,
479
+ 1,
480
+ 1,
481
+ 1,
482
+ 1
483
+ ],
484
+ "n_dims_per_step": -1
485
+ }
486
+ ```
487
+
488
+ ### Training Hyperparameters
489
+ #### Non-Default Hyperparameters
490
+
491
+ - `eval_strategy`: steps
492
+ - `per_device_train_batch_size`: 20
493
+ - `per_device_eval_batch_size`: 20
494
+ - `num_train_epochs`: 10
495
+ - `multi_dataset_batch_sampler`: round_robin
496
+
497
+ #### All Hyperparameters
498
+ <details><summary>Click to expand</summary>
499
+
500
+ - `overwrite_output_dir`: False
501
+ - `do_predict`: False
502
+ - `eval_strategy`: steps
503
+ - `prediction_loss_only`: True
504
+ - `per_device_train_batch_size`: 20
505
+ - `per_device_eval_batch_size`: 20
506
+ - `per_gpu_train_batch_size`: None
507
+ - `per_gpu_eval_batch_size`: None
508
+ - `gradient_accumulation_steps`: 1
509
+ - `eval_accumulation_steps`: None
510
+ - `torch_empty_cache_steps`: None
511
+ - `learning_rate`: 5e-05
512
+ - `weight_decay`: 0.0
513
+ - `adam_beta1`: 0.9
514
+ - `adam_beta2`: 0.999
515
+ - `adam_epsilon`: 1e-08
516
+ - `max_grad_norm`: 1
517
+ - `num_train_epochs`: 10
518
+ - `max_steps`: -1
519
+ - `lr_scheduler_type`: linear
520
+ - `lr_scheduler_kwargs`: {}
521
+ - `warmup_ratio`: 0.0
522
+ - `warmup_steps`: 0
523
+ - `log_level`: passive
524
+ - `log_level_replica`: warning
525
+ - `log_on_each_node`: True
526
+ - `logging_nan_inf_filter`: True
527
+ - `save_safetensors`: True
528
+ - `save_on_each_node`: False
529
+ - `save_only_model`: False
530
+ - `restore_callback_states_from_checkpoint`: False
531
+ - `no_cuda`: False
532
+ - `use_cpu`: False
533
+ - `use_mps_device`: False
534
+ - `seed`: 42
535
+ - `data_seed`: None
536
+ - `jit_mode_eval`: False
537
+ - `use_ipex`: False
538
+ - `bf16`: False
539
+ - `fp16`: False
540
+ - `fp16_opt_level`: O1
541
+ - `half_precision_backend`: auto
542
+ - `bf16_full_eval`: False
543
+ - `fp16_full_eval`: False
544
+ - `tf32`: None
545
+ - `local_rank`: 0
546
+ - `ddp_backend`: None
547
+ - `tpu_num_cores`: None
548
+ - `tpu_metrics_debug`: False
549
+ - `debug`: []
550
+ - `dataloader_drop_last`: False
551
+ - `dataloader_num_workers`: 0
552
+ - `dataloader_prefetch_factor`: None
553
+ - `past_index`: -1
554
+ - `disable_tqdm`: False
555
+ - `remove_unused_columns`: True
556
+ - `label_names`: None
557
+ - `load_best_model_at_end`: False
558
+ - `ignore_data_skip`: False
559
+ - `fsdp`: []
560
+ - `fsdp_min_num_params`: 0
561
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
562
+ - `fsdp_transformer_layer_cls_to_wrap`: None
563
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
564
+ - `deepspeed`: None
565
+ - `label_smoothing_factor`: 0.0
566
+ - `optim`: adamw_torch
567
+ - `optim_args`: None
568
+ - `adafactor`: False
569
+ - `group_by_length`: False
570
+ - `length_column_name`: length
571
+ - `ddp_find_unused_parameters`: None
572
+ - `ddp_bucket_cap_mb`: None
573
+ - `ddp_broadcast_buffers`: False
574
+ - `dataloader_pin_memory`: True
575
+ - `dataloader_persistent_workers`: False
576
+ - `skip_memory_metrics`: True
577
+ - `use_legacy_prediction_loop`: False
578
+ - `push_to_hub`: False
579
+ - `resume_from_checkpoint`: None
580
+ - `hub_model_id`: None
581
+ - `hub_strategy`: every_save
582
+ - `hub_private_repo`: False
583
+ - `hub_always_push`: False
584
+ - `gradient_checkpointing`: False
585
+ - `gradient_checkpointing_kwargs`: None
586
+ - `include_inputs_for_metrics`: False
587
+ - `eval_do_concat_batches`: True
588
+ - `fp16_backend`: auto
589
+ - `push_to_hub_model_id`: None
590
+ - `push_to_hub_organization`: None
591
+ - `mp_parameters`:
592
+ - `auto_find_batch_size`: False
593
+ - `full_determinism`: False
594
+ - `torchdynamo`: None
595
+ - `ray_scope`: last
596
+ - `ddp_timeout`: 1800
597
+ - `torch_compile`: False
598
+ - `torch_compile_backend`: None
599
+ - `torch_compile_mode`: None
600
+ - `dispatch_batches`: None
601
+ - `split_batches`: None
602
+ - `include_tokens_per_second`: False
603
+ - `include_num_input_tokens_seen`: False
604
+ - `neftune_noise_alpha`: None
605
+ - `optim_target_modules`: None
606
+ - `batch_eval_metrics`: False
607
+ - `eval_on_start`: False
608
+ - `eval_use_gather_object`: False
609
+ - `batch_sampler`: batch_sampler
610
+ - `multi_dataset_batch_sampler`: round_robin
611
+
612
+ </details>
613
+
614
+ ### Training Logs
615
+ | Epoch | Step | cosine_map@100 |
616
+ |:------:|:----:|:--------------:|
617
+ | 1.0 | 29 | 0.7800 |
618
+ | 1.7241 | 50 | 0.8242 |
619
+ | 2.0 | 58 | 0.8382 |
620
+
621
+
622
+ ### Framework Versions
623
+ - Python: 3.10.12
624
+ - Sentence Transformers: 3.1.1
625
+ - Transformers: 4.44.2
626
+ - PyTorch: 2.4.1+cu121
627
+ - Accelerate: 0.34.2
628
+ - Datasets: 2.19.2
629
+ - Tokenizers: 0.19.1
630
+
631
+ ## Citation
632
+
633
+ ### BibTeX
634
+
635
+ #### Sentence Transformers
636
+ ```bibtex
637
+ @inproceedings{reimers-2019-sentence-bert,
638
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
639
+ author = "Reimers, Nils and Gurevych, Iryna",
640
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
641
+ month = "11",
642
+ year = "2019",
643
+ publisher = "Association for Computational Linguistics",
644
+ url = "https://arxiv.org/abs/1908.10084",
645
+ }
646
+ ```
647
+
648
+ #### MatryoshkaLoss
649
+ ```bibtex
650
+ @misc{kusupati2024matryoshka,
651
+ title={Matryoshka Representation Learning},
652
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
653
+ year={2024},
654
+ eprint={2205.13147},
655
+ archivePrefix={arXiv},
656
+ primaryClass={cs.LG}
657
+ }
658
+ ```
659
+
660
+ #### MultipleNegativesRankingLoss
661
+ ```bibtex
662
+ @misc{henderson2017efficient,
663
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
664
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
665
+ year={2017},
666
+ eprint={1705.00652},
667
+ archivePrefix={arXiv},
668
+ primaryClass={cs.CL}
669
+ }
670
+ ```
671
+
672
+ <!--
673
+ ## Glossary
674
+
675
+ *Clearly define terms in order to be accessible across audiences.*
676
+ -->
677
+
678
+ <!--
679
+ ## Model Card Authors
680
+
681
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
682
+ -->
683
+
684
+ <!--
685
+ ## Model Card Contact
686
+
687
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
688
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cbe9c1207555bb5d125fa0940b69d9c68685546036f370afe97be14d477a5da
3
+ size 435588776
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff