rbawden's picture
Update pipeline.py
fedd01a
raw
history blame
36.7 kB
#!/usr/bin/python
from transformers import Pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.tokenization_utils_base import TruncationStrategy
from torch import Tensor
import html.parser
import unicodedata
import sys, os
import re
import pickle
from tqdm.auto import tqdm
import operator
from datasets import load_dataset
def _create_modified_versions(entry=None):
if entry is None:
return []
return _remove_diacritics(entry), _vu_vowel_to_v_vowel(entry), _vowel_u_to_vowel_v(entry), _consonant_v_to_consonant_u(entry), _y_to_i(entry), _i_to_y(entry), _eacute_to_e_s(entry), _final_eacute_to_e_z(entry), _egrave_to_eacute(entry), _vowelcircumflex_to_vowel_s(entry), _ce_to_ee(entry)
def _create_further_modified_versions(entry=None):
if entry is None:
return []
return _s_to_f(entry), _ss_to_ff(entry), _s_to_ff(entry), _first_s_to_f(entry), _first_s_to_ff(entry), _last_s_to_f(entry), _last_s_to_ff(entry), _sit_to_st(entry), _ee_to_ce(entry), _z_to_s(entry)
def _remove_diacritics(s, allow_alter_length=True):
# 1-1 replacements only (must not change the number of characters
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
table = s.maketrans(replace_from, replace_into)
s = s.translate(table)
# n-m replacemenets
if allow_alter_length:
for before, after in [('œ', 'oe'), ('æ', 'ae'), ('ƣ', 'oi'), ('ij', 'ij'),
('ȣ', 'ou'), ('Œ', 'OE'), ('Æ', 'AE'), ('Ƣ', 'OI'), ('IJ', 'IJ'), ('Ȣ', 'OU')]:
s = s.replace(before, after)
s = s.strip('-')
return s
def _vu_vowel_to_v_vowel(s):
s = re.sub('v([aeiou])' , r'vu\1', s)
return s
def _vowel_u_to_vowel_v(s):
s = re.sub('([aeiou])u' , r'\1v', s)
return s
def _consonant_v_to_consonant_u(s):
s = re.sub('([^aeiou])v' , r'\1u', s)
return s
def _y_to_i(s):
s = s.replace('y', 'i')
return s
def _i_to_y(s):
s = s.replace('i', 'y')
return s
def _ss_to_ff(s):
s = s.replace('ss', 'ff')
return s
def _s_to_f(s):
s = s.replace('s', 'f')
return s
def _s_to_ff(s):
s = s.replace('s', 'ff')
return s
def _first_s_to_f(s):
s = re.sub('s' , r'f', s, 1)
return s
def _last_s_to_f(s):
s = re.sub('^(.*)s' , r'\1f', s)
return s
def _first_s_to_ff(s):
s = re.sub('s' , r'ff', s, 1)
return s
def _last_s_to_ff(s):
s = re.sub('^(.*)s' , r'\1ff', s)
return s
def _ee_to_ce(s):
s = s.replace('ee', 'ce')
return s
def _sit_to_st(s):
s = s.replace('sit', 'st')
return s
def _z_to_s(s):
s = s.replace('z', 's')
return s
def _ce_to_ee(s):
s = s.replace('ce', 'ee')
return s
def _eacute_to_e_s(s, allow_alter_length=True):
if allow_alter_length:
s = re.sub('é(.)' , r'es\1', s)
s = re.sub('ê(.)' , r'es\1', s)
return s
def _final_eacute_to_e_z(s, allow_alter_length=True):
if allow_alter_length:
s = re.sub('é$' , r'ez', s)
s = re.sub('ê$' , r'ez', s)
return s
def _egrave_to_eacute(s):
s = re.sub('è(.)' , r'é\1', s)
return s
def _vowelcircumflex_to_vowel_s(s, allow_alter_length=True):
if allow_alter_length:
for before, after in [('â', 'as'), ('ê', 'es'), ('î', 'is'), ('ô', 'os'), ('û', 'us')]:
s = s.replace(before, after)
return s
def basic_tokenise(string):
# separate punctuation
for char in r',.;?!:)("…-':
string = re.sub('(?<! )' + re.escape(char) + '+', ' ' + char, string)
for char in '\'"’':
string = re.sub(char + '(?! )' , char + ' ', string)
return string.strip()
def basic_tokenise_bs(string):
# separate punctuation
string = re.sub('(?<! )([,\.;\?!:\)\("…\'‘’”“«»\-])', r' \1', string)
string = re.sub('([,\.;\?!:\)\("…\'‘’”“«»\-])(?! )' , r'\1 ', string)
return string.strip()
def homogenise(sent, allow_alter_length=False):
'''
Homogenise an input sentence by lowercasing, removing diacritics, etc.
If allow_alter_length is False, then only applies changes that do not alter
the length of the original sentence (i.e. one-to-one modifications). If True,
then also apply n-m replacements.
'''
sent = sent.lower()
# n-m replacemenets
if allow_alter_length:
for before, after in [('ã', 'an'), ('xoe', 'œ')]:
sent = sent.replace(before, after)
sent = sent.strip('-')
# 1-1 replacements only (must not change the number of characters
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ"
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs"
table = sent.maketrans(replace_from, replace_into)
return sent.translate(table)
def get_surrounding_punct(word):
beginning_match = re.match("^(['\-]*)", word)
beginning, end = '', ''
if beginning_match:
beginning = beginning_match.group(1)
end_match = re.match("(['\-]*)$", word)
if end_match:
end = end_match.group(1)
return beginning, end
def add_orig_punct(old_word, new_word):
beginning, end = get_surrounding_punct(old_word)
output = ''
if beginning != None and not re.match("^"+re.escape(beginning), new_word):
output += beginning
if new_word != None:
output += new_word
if end != None and not re.match(re.escape(end)+"$", new_word):
output += end
return output
def get_caps(word):
# remove any non-alphatic characters at begining or end
word = word.strip("-' ")
first, second, allcaps = False, False, False
if len(word) > 0 and word[0].lower() != word[0]:
first = True
if len(word) > 1 and word[1].lower() != word[1]:
second = True
if word.upper() == word and word.lower() != word:
allcaps = True
return first, second, allcaps
def set_caps(word, first, second, allcaps):
if word == None:
return None
if allcaps:
return word.upper()
elif first and second:
return word[0].upper() + word[1].upper() + word[2:]
elif first:
if len(word) > 1:
return word[0].upper() + word[1:]
elif len(word) == 1:
return word[0]
else:
return word
elif second:
if len(word) > 2:
return word[0] + word[1].upper() + word[2:]
elif len(word) > 1:
return word[0] + word[1].upper() + word[2:]
elif len(word) == 1:
return word[0]
else:
return word
else:
return word
######## Edit distance functions #######
def _wedit_dist_init(len1, len2):
lev = []
for i in range(len1):
lev.append([0] * len2) # initialize 2D array to zero
for i in range(len1):
lev[i][0] = i # column 0: 0,1,2,3,4,...
for j in range(len2):
lev[0][j] = j # row 0: 0,1,2,3,4,...
return lev
def _wedit_dist_step(
lev, i, j, s1, s2, last_left, last_right, transpositions=False
):
c1 = s1[i - 1]
c2 = s2[j - 1]
# skipping a character in s1
a = lev[i - 1][j] + _wedit_dist_deletion_cost(c1,c2)
# skipping a character in s2
b = lev[i][j - 1] + _wedit_dist_insertion_cost(c1,c2)
# substitution
c = lev[i - 1][j - 1] + (_wedit_dist_substitution_cost(c1, c2) if c1 != c2 else 0)
# pick the cheapest
lev[i][j] = min(a, b, c)#, d)
def _wedit_dist_backtrace(lev):
i, j = len(lev) - 1, len(lev[0]) - 1
alignment = [(i, j, lev[i][j])]
while (i, j) != (0, 0):
directions = [
(i - 1, j), # skip s1
(i, j - 1), # skip s2
(i - 1, j - 1), # substitution
]
direction_costs = (
(lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j))
for i, j in directions
)
_, (i, j) = min(direction_costs, key=operator.itemgetter(0))
alignment.append((i, j, lev[i][j]))
return list(reversed(alignment))
def _wedit_dist_substitution_cost(c1, c2):
if c1 == ' ' and c2 != ' ':
return 1000000
if c2 == ' ' and c1 != ' ':
return 30
for c in ",.;-!?'":
if c1 == c and c2 != c:
return 20
if c2 == c and c1 != c:
return 20
return 1
def _wedit_dist_deletion_cost(c1, c2):
if c1 == ' ':
return 2
if c2 == ' ':
return 1000000
return 0.8
def _wedit_dist_insertion_cost(c1, c2):
if c1 == ' ':
return 1000000
if c2 == ' ':
return 2
return 0.8
def wedit_distance_align(s1, s2):
"""
Calculate the minimum Levenshtein weighted edit-distance based alignment
mapping between two strings. The alignment finds the mapping
from string s1 to s2 that minimizes the edit distance cost, where each
operation is weighted by a dedicated weighting function.
For example, mapping "rain" to "shine" would involve 2
substitutions, 2 matches and an insertion resulting in
the following mapping:
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)]
NB: (0, 0) is the start state without any letters associated
See more: https://web.stanford.edu/class/cs124/lec/med.pdf
In case of multiple valid minimum-distance alignments, the
backtrace has the following operation precedence:
1. Skip s1 character
2. Skip s2 character
3. Substitute s1 and s2 characters
The backtrace is carried out in reverse string order.
This function does not support transposition.
:param s1, s2: The strings to be aligned
:type s1: str
:type s2: str
:rtype: List[Tuple(int, int)]
"""
# set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _wedit_dist_init(len1 + 1, len2 + 1)
# iterate over the array
for i in range(len1):
for j in range(len2):
_wedit_dist_step(
lev,
i + 1,
j + 1,
s1,
s2,
0,
0,
transpositions=False,
)
# backtrace to find alignment
alignment = _wedit_dist_backtrace(lev)
return alignment
def _last_left_t_init(sigma):
return {c: 0 for c in sigma}
def wedit_distance(s1, s2):
"""
Calculate the Levenshtein weighted edit-distance between two strings.
The weighted edit distance is the number of characters that need to be
substituted, inserted, or deleted, to transform s1 into s2, weighted
by a dedicated weighting function.
For example, transforming "rain" to "shine" requires three steps,
consisting of two substitutions and one insertion:
"rain" -> "sain" -> "shin" -> "shine". These operations could have
been done in other orders, but at least three steps are needed.
Allows specifying the cost of substitution edits (e.g., "a" -> "b"),
because sometimes it makes sense to assign greater penalties to
substitutions.
This also optionally allows transposition edits (e.g., "ab" -> "ba"),
though this is disabled by default.
:param s1, s2: The strings to be analysed
:param transpositions: Whether to allow transposition edits
:type s1: str
:type s2: str
:type substitution_cost: int
:type transpositions: bool
:rtype: int
"""
# set up a 2-D array
len1 = len(s1)
len2 = len(s2)
lev = _wedit_dist_init(len1 + 1, len2 + 1)
# retrieve alphabet
sigma = set()
sigma.update(s1)
sigma.update(s2)
# set up table to remember positions of last seen occurrence in s1
last_left_t = _last_left_t_init(sigma)
# iterate over the array
# i and j start from 1 and not 0 to stay close to the wikipedia pseudo-code
# see https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
for i in range(len1):
last_right_buf = 0
for j in range(len2):
last_left = last_left_t[s2[j - 1]]
last_right = last_right_buf
if s1[i - 1] == s2[j - 1]:
last_right_buf = j
_wedit_dist_step(
lev,
i + 1,
j + 1,
s1,
s2,
last_left,
last_right,
transpositions=False,
)
last_left_t[s1[i - 1]] = i
return lev[len1-1][len2-1]
def space_after(idx, sent):
if idx < len(sent) -1 and sent[idx + 1] == ' ':
return True
return False
def space_before(idx, sent):
if idx > 0 and sent[idx - 1] == ' ':
return True
return False
######## Normaliation pipeline #########
class NormalisationPipeline(Pipeline):
def __init__(self, beam_size=5, batch_size=32, tokenise_func=None, cache_file=None, no_postproc_lex=False,
no_post_clean=False, **kwargs):
self.beam_size = beam_size
# classic tokeniser function (used for alignments)
if tokenise_func is not None:
self.classic_tokenise = tokenise_func
else:
self.classic_tokenise = basic_tokenise
self.no_post_clean = no_post_clean
self.no_postproc_lex = no_postproc_lex
# load lexicon
if no_postproc_lex:
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = None, None, None
else:
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = self.load_lexicon(cache_file=cache_file)
super().__init__(**kwargs)
def load_lexicon(self, cache_file=None):
orig_lefff_words = []
mapping_to_lefff = {}
mapping_to_lefff2 = {}
remove = set([])
remove2 = set([])
# load pickled version if there
if cache_file is not None and os.path.exists(cache_file):
return pickle.load(open(cache_file, 'rb'))
dataset = load_dataset("sagot/lefff_morpho")
for entry in set([x['form'].lower() for x in dataset['test']]):
orig_lefff_words.append(entry)
orig_lefff_words.append("-"+entry)
for mod_entry in set(_create_modified_versions(entry)):
if mod_entry in mapping_to_lefff and mapping_to_lefff[mod_entry] != entry:
remove.add(mod_entry)
if mod_entry != mod_entry.upper():
remove.add(mod_entry)
if mod_entry not in mapping_to_lefff and mod_entry != entry:
mapping_to_lefff[mod_entry] = entry
if mod_entry != mod_entry.upper():
mapping_to_lefff2[mod_entry.upper()] = entry.upper()
for mod_entry2 in set(_create_modified_versions(mod_entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry2 in set(_create_further_modified_versions(mod_entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry2 in set(_create_further_modified_versions(entry)):
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry:
remove2.add(mod_entry2)
if mod_entry2 != mod_entry2.upper():
remove2.add(mod_entry2)
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry:
mapping_to_lefff2[mod_entry2] = entry
if mod_entry2 != mod_entry2.upper():
mapping_to_lefff2[mod_entry2.upper()] = entry.upper()
for mod_entry in list(mapping_to_lefff.keys()):
if mod_entry != "":
mapping_to_lefff["-"+mod_entry] = "-"+mapping_to_lefff[mod_entry]
for mod_entry2 in list(mapping_to_lefff2.keys()):
if mod_entry2 != "":
mapping_to_lefff2["-"+mod_entry2] = "-"+mapping_to_lefff2[mod_entry2]
for entry in remove:
del mapping_to_lefff[entry]
for entry in remove2:
del mapping_to_lefff2[entry]
if cache_file is not None:
pickle.dump((orig_lefff_words, mapping_to_lefff, mapping_to_lefff2), open(cache_file, 'wb'))
return orig_lefff_words, mapping_to_lefff, mapping_to_lefff2
def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs):
preprocess_params = {}
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = generate_kwargs
postprocess_params = {}
if clean_up_tokenisation_spaces is not None:
postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces
return preprocess_params, forward_params, postprocess_params
def check_inputs(self, input_length: int, min_length: int, max_length: int):
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
return True
def make_printable(self, s):
'''Replace non-printable characters in a string.'''
return s.translate(NOPRINT_TRANS_TABLE)
def normalise(self, line):
for before, after in [('[«»\“\”]', '"'), ('[‘’]', "'"), (' +', ' '), ('\"+', '"'),
("'+", "'"), ('^ *', ''), (' *$', '')]:
line = re.sub(before, after, line)
return line.strip() + ' </s>'
def _parse_and_tokenise(self, *args, truncation):
prefix = ""
if isinstance(args[0], list):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input")
args = ([prefix + arg for arg in args[0]],)
padding = True
elif isinstance(args[0], str):
args = (prefix + args[0],)
padding = False
else:
raise ValueError(
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
)
inputs = [self.normalise(x) for x in args]
inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework)
toks = []
for tok_ids in inputs.input_ids:
toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids)))
# This is produced by tokenisers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs)
return inputs
def _forward(self, model_inputs, **generate_kwargs):
in_b, input_length = model_inputs["input_ids"].shape
generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length)
generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length)
generate_kwargs['num_beams'] = self.beam_size
self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"])
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
out_b = output_ids.shape[0]
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
return {"output_ids": output_ids}
def postprocess(self, model_outputs, clean_up_tok_spaces=False):
records = []
for output_ids in model_outputs["output_ids"][0]:
record = {"text": self.tokenizer.decode(output_ids, skip_special_tokens=True,
clean_up_tokenisation_spaces=clean_up_tok_spaces).strip()}
records.append(record)
return records
def postprocess_correct_sent(self, alignment):
output = []
for i, (orig_word, pred_word, _) in enumerate(alignment):
if orig_word != '':
postproc_word = self.postprocess_correct_word(orig_word, pred_word, alignment)
alignment[i] = (orig_word, postproc_word, -1) # replace prediction in the alignment
return alignment
def postprocess_correct_word(self, orig_word, pred_word, alignment):
# pred_word exists in lexicon, take it
orig_caps = get_caps(orig_word)
if re.match("^[0-9]+$", orig_word) or re.match("^[XVUI]+$", orig_word):
orig_word = orig_word.replace('U', 'V')
return orig_word
if pred_word.lower() in self.orig_lefff_words:
return set_caps(pred_word, *orig_caps)
# otherwise, if original word exists, take that
if orig_word.lower() in self.orig_lefff_words:
return orig_word
pred_replacement = None
# otherwise if pred word is in the lexicon with some changes, take that
if pred_word != '' and pred_word != ' ':
pred_replacement = self.mapping_to_lefff.get(pred_word, None)
if pred_replacement is not None:
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
# otherwise if orig word is in the lexicon with some changes, take that
orig_replacement = self.mapping_to_lefff.get(orig_word, None)
if orig_replacement is not None:
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))
# otherwise if pred word is in the lexicon with more changes, take that
if pred_word != '' and pred_word != ' ':
pred_replacement = self.mapping_to_lefff2.get(pred_word, None)
if pred_replacement is not None:
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps))
# otherwise if orig word is in the lexicon with more changes, take that
orig_replacement = self.mapping_to_lefff2.get(orig_word, None)
if orig_replacement is not None:
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps))
if orig_word == pred_word:
return orig_word
if orig_word == " " and pred_word == "":
return orig_word
wed = wedit_distance(pred_word,orig_word)
if wed > 2:
return orig_word
return add_orig_punct(pred_word, set_caps(pred_word, *orig_caps))
def __call__(self, input_sents, **kwargs):
r"""
Generate the output texts using texts given as inputs.
Args:
args (`List[str]`):
Input text for the encoder.
apply_postprocessing (`Bool`):
Apply postprocessing using the lexicon
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
result = super().__call__(input_sents, **kwargs)
output = []
for i in range(len(result)):
input_sent, pred_sent = input_sents[i].strip(), result[i][0]['text'].strip()
input_sent = input_sent.replace('ſ' , 's')
# apply cleaning and get alignment (necessary for postprocessing w/ the lexicon)
if not self.no_post_clean:
pred_sent = self.post_cleaning(pred_sent)
alignment, pred_sent_tok = self.align(input_sent, pred_sent)
# apply postprocessing w/ the lexicon to the sentence (using the alignment)
if not self.no_postproc_lex:
alignment = self.postprocess_correct_sent(alignment)
# get the predicted sentence from the alignment
pred_sent = self.get_pred_from_alignment(alignment)
# redo another round of cleaning and get the alignment again in case things have changed
if not self.no_post_clean:
pred_sent = self.post_cleaning(pred_sent)
alignment, pred_sent_tok = self.align(input_sent, pred_sent)
# get aligned character spans
char_spans = self.get_char_idx_align(input_sent, pred_sent, alignment)
output.append({'text': pred_sent, 'alignment': char_spans})
return output
def post_cleaning(self, s):
s = s.replace(' ' , '')
s = s.replace('ſ' , 's')
s = s.replace('ß' , 'ss')
s = s.replace('&' , 'et')
s = re.sub('ẽ([mbp])' , r'em\1', s)
s = s.replace('ẽ' , 'en')
s = re.sub('ã([mbp])' , r'am\1', s)
s = s.replace('ã' , 'an')
s = re.sub('õ([mbp])' , r'om\1', s)
s = s.replace('õ' , 'on')
s = re.sub('ũ([mbp])' , r'um\1', s)
s = s.replace('ũ' , 'un')
return s
def align(self, sent_ref, sent_pred):
sent_ref_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_ref))
sent_pred_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_pred))
backpointers = wedit_distance_align(homogenise(sent_ref_tok), homogenise(sent_pred_tok))
alignment, current_word, seen1, seen2, last_weight = [], ['', ''], [], [], 0
for i_ref, i_pred, weight in backpointers:
if i_ref == 0 and i_pred == 0:
continue
# next characters are both spaces -> add current word straight away
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == ' ' \
and i_ref not in seen1 and i_pred not in seen2:
# if current word is empty -> insert a space on both sides
if current_word[0] == '' and current_word[1] == '':
alignment.append((' ', ' ', weight-last_weight))
# else add the current word to both sides
else:
alignment.append((current_word[0], current_word[1], weight-last_weight))
last_weight = weight
current_word = ['', '']
seen1.append(i_ref)
seen2.append(i_pred)
# if space in ref and dash in pred
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == '-' \
and i_ref not in seen1 and i_pred not in seen2 \
and current_word[0] == '' and current_word[1] == '':
alignment.append((' ', '', weight-last_weight))
last_weight = weight
current_word = ['', '-']
seen1.append(i_ref)
seen2.append(i_pred)
else:
end_space = '' #'░'
# add new character to ref
if i_ref <= len(sent_ref_tok) and i_ref not in seen1:
if i_ref > 0:
current_word[0] += sent_ref_tok[i_ref-1]
seen1.append(i_ref)
# add new character to pred
if i_pred <= len(sent_pred_tok) and i_pred not in seen2:
if i_pred > 0:
current_word[1] += sent_pred_tok[i_pred-1] if sent_pred_tok[i_pred-1] != ' ' else ' ' #'▁'
end_space = '' if space_after(i_pred, sent_pred_tok) else ''# '░'
seen2.append(i_pred)
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[0].strip() != '':
alignment.append((current_word[0].strip(), current_word[1].strip() + end_space, weight-last_weight))
last_weight = weight
current_word = ['', '']
# space in ref but aligned to nothing in pred (under-translation)
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[1].strip() == '':
alignment.append((current_word[0], current_word[1], weight-last_weight))
last_weight = weight
current_word = ['', '']
seen1.append(i_ref)
seen2.append(i_pred)
# final word
alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight))
# check that both strings are entirely covered
recovered1 = re.sub(' +', ' ', ' '.join([x[0] for x in alignment]))
recovered2 = re.sub(' +', ' ', ' '.join([x[1] for x in alignment]))
assert re.sub('[  ]+', ' ', recovered1) == re.sub('[  ]+', ' ', sent_ref_tok), \
'\n1: *' + re.sub('[  ]+', ' ', recovered1) + "*\n1: *" + re.sub('[  ]+', ' ', sent_ref_tok) + '*'
assert re.sub('[░▁ ]+', '', recovered2) == re.sub('[▁ ]+', '', sent_pred_tok), \
'\n2: ' + re.sub('[  ]+', ' ', recovered2) + "\n2: " + re.sub('[  ]+', ' ', sent_pred_tok)
return alignment, sent_pred_tok
def get_pred_from_alignment(self, alignment):
return re.sub(' +', ' ', ''.join([x[1] if x[1] != '' else '\n' for x in alignment]).replace('\n', ''))
def get_char_idx_align(self, sent_ref, sent_pred, alignment):
covered_ref, covered_pred = 0, 0
ref_chars = [i for i, character in enumerate(sent_ref)] + [len(sent_ref)] #
pred_chars = [i for i, character in enumerate(sent_pred)] + [len(sent_pred)]# if character not in [' ']]
align_idx = []
for a_ref, a_pred, _ in alignment:
if a_ref == '' and a_pred == '':
covered_pred += 1
continue
a_pred = re.sub(' +', ' ', a_pred).strip()
span_ref = [ref_chars[covered_ref], ref_chars[covered_ref + len(a_ref)]]
covered_ref += len(a_ref)
span_pred = [pred_chars[covered_pred], pred_chars[covered_pred + len(a_pred)]]
covered_pred += len(a_pred)
align_idx.append((span_ref, span_pred))
return align_idx
def normalise_text(list_sents, batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
normalisation_pipeline = NormalisationPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size,
cache_file=cache_file,
no_postproc_lex=no_postproc_lex,
no_post_clean=no_post_clean)
normalised_outputs = normalisation_pipeline(list_sents)
return normalised_outputs
def normalise_from_stdin(batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False):
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation")
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation")
normalisation_pipeline = NormalisationPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size,
cache_file=cache_file,
no_postproc_lex=no_postproc_lex,
no_post_clean=no_post_clean
)
list_sents = []
ex = ["7. Qu'vne force plus grande de ſi peu que l'on voudra, que celle auec laquelle l'eau de la hauteur de trente & vn pieds, tend à couler en bas, ſuffit pour faire admettre ce vuide apparent, & meſme ſi grãd que l'on voudra, c'eſt à dire, pour faire des-vnir les corps d'vn ſi grand interualle que l'on voudra, pourueu qu'il n'y ait point d'autre obſtacle à leur ſeparation ny à leur eſloignement, que l'horreur que la Nature a pour ce vuide apparent."]
for sent in sys.stdin:
list_sents.append(sent.strip())
normalised_outputs = normalisation_pipeline(list_sents)
for s, sent in enumerate(normalised_outputs):
alignment=sent['alignment']
print(sent['text'])
# checking that the alignment makes sense
#for b, a in alignment:
# print('input: ' + ''.join([list_sents[s][x] for x in range(b[0], max(len(b), b[1]))]) + '')
# print('pred: ' + ''.join([sent['text'][x] for x in range(a[0], max(len(a), a[1]))]) + '')
return normalised_outputs
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding')
parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding')
parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN')
parser.add_argument('-c', '--cache_lexicon', type=str, default=None, help='Path to cache the lexicon file to speed up loading')
parser.add_argument('-n', '--no_postproc_lex', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
parser.add_argument('-m', '--no_post_clean', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output')
args = parser.parse_args()
if args.input_file is None:
normalise_from_stdin(batch_size=args.batch_size,
beam_size=args.beam_size,
cache_file=args.cache_lexicon,
no_postproc_lex=args.no_postproc_lex,
no_post_clean=args.no_post_clean)
else:
list_sents = []
with open(args.input_file) as fp:
for line in fp:
list_sents.append(line.strip())
output_sents = normalise_text(list_sents,
batch_size=args.batch_size,
beam_size=args.beam_size,
cache_file=args.cache_lexicon,
no_postproc_lex=args.no_postproc_lex,
no_post_clean=args.no_post_clean)
for output_sent in output_sents:
print(output_sent['text'])