Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ language: fr
|
|
3 |
license: cc-by-4.0
|
4 |
---
|
5 |
|
6 |
-
# Cour de Cassation *titrage* prediction model
|
7 |
|
8 |
Model for the automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). If you use this model, please cite our research paper (see [below](#cite)).
|
9 |
|
@@ -17,7 +17,18 @@ This model is to be used to produce *titrages* for those *sommaires* that do not
|
|
17 |
|
18 |
### How to use
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
### Limitations and bias
|
|
|
3 |
license: cc-by-4.0
|
4 |
---
|
5 |
|
6 |
+
# Cour de Cassation automatic *titrage* prediction model
|
7 |
|
8 |
Model for the automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). If you use this model, please cite our research paper (see [below](#cite)).
|
9 |
|
|
|
17 |
|
18 |
### How to use
|
19 |
|
20 |
+
```
|
21 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
22 |
+
|
23 |
+
tokeniser = AutoTokenizer.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
|
25 |
|
26 |
+
matiere = "matter"
|
27 |
+
sommaire = "full text from the sommaire on a single line"
|
28 |
+
inputs = tokeniser([matiere + " <t> " + sommaire], return_tensors='pt')
|
29 |
+
outputs = model.generate(inputs['input_ids'])
|
30 |
+
tokeniser.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenisation_spaces=True)
|
31 |
+
```
|
32 |
|
33 |
|
34 |
### Limitations and bias
|