Rachel Bawden
bug pipeline
276d772
#!/usr/bin/python
from transformers import Pipeline, pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.tokenization_utils_base import TruncationStrategy
from torch import Tensor
import html.parser
import unicodedata
import sys, os
import re
from tqdm.auto import tqdm
import operator
######## PredTitrage pipeline #########
class PredTitragesPipeline(Pipeline):
def __init__(self, beam_size=5, batch_size=32, **kwargs):
self.beam_size = beam_size
super().__init__(**kwargs)
def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs):
preprocess_params = {}
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = generate_kwargs
postprocess_params = {}
if clean_up_tokenisation_spaces is not None:
postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces
return preprocess_params, forward_params, postprocess_params
def check_inputs(self, input_length: int, min_length: int, max_length: int):
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
return True
def make_printable(self, s):
'''Replace non-printable characters in a string.'''
return s.translate(NOPRINT_TRANS_TABLE)
def normalise(self, line):
line = unicodedata.normalize('NFKC', line)
line = self.make_printable(line)
for before, after in [('[«»\“\”]', '"'),
('[‘’]', "'"),
(' +', ' '),
('\"+', '"'),
("'+", "'"),
('^ *', ''),
(' *$', '')]:
line = re.sub(before, after, line)
return line.strip() + ' </s>'
def _parse_and_tokenise(self, *args, truncation):
prefix = ""
if isinstance(args[0], list):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input")
args = ([prefix + arg for arg in args[0]],)
padding = True
elif isinstance(args[0], str):
args = (prefix + args[0],)
padding = False
else:
raise ValueError(
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
)
inputs = [self.normalise(x) for x in args]
inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework)
toks = []
for tok_ids in inputs.input_ids:
toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids)))
# This is produced by tokenisers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs)
return inputs
def _forward(self, model_inputs, **generate_kwargs):
in_b, input_length = model_inputs["input_ids"].shape
generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length)
generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length)
generate_kwargs['num_beams'] = self.beam_size
self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"])
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
out_b = output_ids.shape[0]
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
return {"output_ids": output_ids}
def postprocess(self, model_outputs, clean_up_tokenisation_spaces=False):
records = []
for output_ids in model_outputs["output_ids"][0]:
record = {
"text": self.tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenisation_spaces=clean_up_tokenisation_spaces,
)
}
records.append(record)
return records
def correct_hallunications(self, orig, output):
# align the original and output tokens
# check that the correspondences are legitimate and correct if not
# replace <EMOJI> symbols by the original ones
return output
def __call__(self, *args, **kwargs):
r"""
Generate the output text(s) using text(s) given as inputs.
Args:
args (`str` or `List[str]`):
Input text for the encoder.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs.
clean_up_tokenisation_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`):
The truncation strategy for the tokenisation within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE`
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's
max_length instead of throwing an error down the line.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
result = super().__call__(*args, **kwargs)
if (isinstance(args[0], list)
and all(isinstance(el, str) for el in args[0])
and all(len(res) == 1 for res in result)):
return result
else:
return result[0] # check this
def predict_titrages(list_sents, batch_size=32, beam_size=5):
tokeniser = AutoTokenizer.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
pipeline = PredTitragesPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size)
outputs = pipeline(list_sents)
return outputs
def predict_from_stdin(batch_size=32, beam_size=5):
tokeniser = AutoTokenizer.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/CCASS-pred-titrages-base", use_auth_token=True)
pipeline = PredTitragesPipeline(model=model,
tokenizer=tokeniser,
batch_size=batch_size,
beam_size=beam_size)
list_sents = []
for sent in sys.stdin:
list_sents.append(sent.strip())
outputs = pipeline(list_sents)
for s, sent in enumerate(outputs):
print(sent)
return outputs
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding')
parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding')
parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN')
args = parser.parse_args()
if args.input_file is None:
predict_from_stdin(batch_size=args.batch_size, beam_size=args.beam_size)
else:
list_sents = []
with open(args.input_file) as fp:
for line in fp:
list_sents.append(line.strip())
output_sents = predict_text(list_sents, batch_size=args.batch_size, beam_size=args.beam_size)
for output_sent in output_sents:
print(output_sent)