File size: 1,805 Bytes
10e8e91 0dbf719 0339a81 10e8e91 d9500ba 10e8e91 0339a81 10e8e91 0339a81 10e8e91 2961e12 98daddf 10e8e91 0024494 10e8e91 98daddf 10e8e91 e73865c 10e8e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
language:
- en
tags:
- text2text-generation
- mednli
datasets:
- pubmed
- pmc/open_access
widget:
- text: "mednli: sentence1: In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA. sentence2: The patient is hemodynamically stable"
---
# SciFive Pubmed+PMC Large on MedNLI
## Introduction
Finetuned SciFive Pubmed+PMC Large model achieved state-of-the-art results on [MedNLI (Medical Natural Language Inference)](https://paperswithcode.com/sota/natural-language-inference-on-mednli)
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598)
Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_
## How to use
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive).
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI")
model.cuda()
sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA."
sent_2 = "The patient is hemodynamically stable"
text = f"mednli: sentence1: {sent_1} sentence2: {sent_2}"
encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=8,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
``` |