rasyosef commited on
Commit
c53d454
·
verified ·
1 Parent(s): 53b9e78

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -10,19 +10,22 @@ metrics:
10
  - perplexity
11
  pipeline_tag: fill-mask
12
  widget:
13
- - text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።
14
  example_title: Example 1
15
- - text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር [MASK] ግዢ በእጅጉ ጨምሯል።
16
  example_title: Example 2
17
- - text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ [MASK] ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው።
18
  example_title: Example 3
19
- - text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል [MASK] እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው።
20
  example_title: Example 4
21
  ---
22
 
23
  # roberta-base-amharic
24
 
25
- This model has the same architecture as [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of **290 Million tokens**. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 32k.
 
 
 
26
  It achieves the following results on the evaluation set:
27
 
28
  - `Loss: 2.09`
 
10
  - perplexity
11
  pipeline_tag: fill-mask
12
  widget:
13
+ - text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ <mask> ተቆጥሯል።
14
  example_title: Example 1
15
+ - text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር <mask> ግዢ በእጅጉ ጨምሯል።
16
  example_title: Example 2
17
+ - text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ <mask> ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው።
18
  example_title: Example 3
19
+ - text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል <mask> እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው።
20
  example_title: Example 4
21
  ---
22
 
23
  # roberta-base-amharic
24
 
25
+ This model has the same architecture as [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of **290 Million tokens**. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 32k.
26
+
27
+ The model was trained for **22 hours** on an **A100 40GB GPU**.
28
+
29
  It achieves the following results on the evaluation set:
30
 
31
  - `Loss: 2.09`