RapMinerz commited on
Commit
a480323
·
1 Parent(s): 86042cc

update readme

Browse files
Files changed (1) hide show
  1. README.md +22 -22
README.md CHANGED
@@ -76,28 +76,28 @@ Once the model is loaded, you can use it as shown:
76
 
77
  ```python
78
  model.wv.most_similar("bendo")
79
- [('binks', 0.8920747637748718),
80
- ('bando', 0.8460732698440552),
81
- ('hood', 0.8299438953399658),
82
- ('tieks', 0.8264378309249878),
83
- ('hall', 0.817583441734314),
84
- ('secteur', 0.8145656585693359),
85
- ('barrio', 0.809047281742096),
86
- ('block', 0.793493390083313),
87
- ('bâtiment', 0.7826434969902039),
88
- ('bloc', 0.7753982543945312)]
89
 
90
  model.wv.most_similar("kichta")
91
- [('liasse', 0.878665566444397),
92
- ('sse-lia', 0.8552991151809692),
93
- ('kishta', 0.8535938262939453),
94
- ('kich', 0.7646669149398804),
95
- ('skalape', 0.7576569318771362),
96
- ('moula', 0.7466527223587036),
97
- ('valise', 0.7429592609405518),
98
- ('sacoche', 0.7324921488761902),
99
- ('mallette', 0.7247079014778137),
100
- ('re-pai', 0.7060815095901489)]
101
  ```
102
 
103
  2. **To find the word that doesn't match in a list of words**
@@ -114,10 +114,10 @@ model.wv.doesnt_match(["Zidane","Mbappé","Ronaldo","Messi","Jordan"])
114
 
115
  ```python
116
  model.wv.similarity("kichta", "moula")
117
- 0.7466528
118
 
119
  model.wv.similarity("bonheur", "moula")
120
- 0.16985293
121
  ```
122
 
123
  4. **Or even get the vector representation of a word**
 
76
 
77
  ```python
78
  model.wv.most_similar("bendo")
79
+ [('binks', 0.7833775877952576),
80
+ ('bando', 0.7511972188949585),
81
+ ('tieks', 0.7123318910598755),
82
+ ('ghetto', 0.6887569427490234),
83
+ ('hall', 0.679759681224823),
84
+ ('barrio', 0.6694452166557312),
85
+ ('hood', 0.6490002274513245),
86
+ ('block', 0.6299082040786743),
87
+ ('bloc', 0.627208411693573),
88
+ ('secteur', 0.6225507855415344)]
89
 
90
  model.wv.most_similar("kichta")
91
+ [('liasse', 0.7877408266067505),
92
+ ('sse-lia', 0.7605615854263306),
93
+ ('kishta', 0.7043415904045105),
94
+ ('kich', 0.663270890712738),
95
+ ('sacoche', 0.6381840705871582),
96
+ ('moula', 0.6318666338920593),
97
+ ('valise', 0.5628494024276733),
98
+ ('bonbonne', 0.55326247215271),
99
+ ('skalape', 0.5523083806037903),
100
+ ('kichtas', 0.5385912656784058)]
101
  ```
102
 
103
  2. **To find the word that doesn't match in a list of words**
 
114
 
115
  ```python
116
  model.wv.similarity("kichta", "moula")
117
+ 0.63186663
118
 
119
  model.wv.similarity("bonheur", "moula")
120
+ 0.14551902
121
  ```
122
 
123
  4. **Or even get the vector representation of a word**