RapMinerz
commited on
Commit
·
a480323
1
Parent(s):
86042cc
update readme
Browse files
README.md
CHANGED
@@ -76,28 +76,28 @@ Once the model is loaded, you can use it as shown:
|
|
76 |
|
77 |
```python
|
78 |
model.wv.most_similar("bendo")
|
79 |
-
[('binks', 0.
|
80 |
-
('bando', 0.
|
81 |
-
('
|
82 |
-
('
|
83 |
-
('hall', 0.
|
84 |
-
('
|
85 |
-
('
|
86 |
-
('block', 0.
|
87 |
-
('
|
88 |
-
('
|
89 |
|
90 |
model.wv.most_similar("kichta")
|
91 |
-
[('liasse', 0.
|
92 |
-
('sse-lia', 0.
|
93 |
-
('kishta', 0.
|
94 |
-
('kich', 0.
|
95 |
-
('
|
96 |
-
('moula', 0.
|
97 |
-
('valise', 0.
|
98 |
-
('
|
99 |
-
('
|
100 |
-
('
|
101 |
```
|
102 |
|
103 |
2. **To find the word that doesn't match in a list of words**
|
@@ -114,10 +114,10 @@ model.wv.doesnt_match(["Zidane","Mbappé","Ronaldo","Messi","Jordan"])
|
|
114 |
|
115 |
```python
|
116 |
model.wv.similarity("kichta", "moula")
|
117 |
-
0.
|
118 |
|
119 |
model.wv.similarity("bonheur", "moula")
|
120 |
-
0.
|
121 |
```
|
122 |
|
123 |
4. **Or even get the vector representation of a word**
|
|
|
76 |
|
77 |
```python
|
78 |
model.wv.most_similar("bendo")
|
79 |
+
[('binks', 0.7833775877952576),
|
80 |
+
('bando', 0.7511972188949585),
|
81 |
+
('tieks', 0.7123318910598755),
|
82 |
+
('ghetto', 0.6887569427490234),
|
83 |
+
('hall', 0.679759681224823),
|
84 |
+
('barrio', 0.6694452166557312),
|
85 |
+
('hood', 0.6490002274513245),
|
86 |
+
('block', 0.6299082040786743),
|
87 |
+
('bloc', 0.627208411693573),
|
88 |
+
('secteur', 0.6225507855415344)]
|
89 |
|
90 |
model.wv.most_similar("kichta")
|
91 |
+
[('liasse', 0.7877408266067505),
|
92 |
+
('sse-lia', 0.7605615854263306),
|
93 |
+
('kishta', 0.7043415904045105),
|
94 |
+
('kich', 0.663270890712738),
|
95 |
+
('sacoche', 0.6381840705871582),
|
96 |
+
('moula', 0.6318666338920593),
|
97 |
+
('valise', 0.5628494024276733),
|
98 |
+
('bonbonne', 0.55326247215271),
|
99 |
+
('skalape', 0.5523083806037903),
|
100 |
+
('kichtas', 0.5385912656784058)]
|
101 |
```
|
102 |
|
103 |
2. **To find the word that doesn't match in a list of words**
|
|
|
114 |
|
115 |
```python
|
116 |
model.wv.similarity("kichta", "moula")
|
117 |
+
0.63186663
|
118 |
|
119 |
model.wv.similarity("bonheur", "moula")
|
120 |
+
0.14551902
|
121 |
```
|
122 |
|
123 |
4. **Or even get the vector representation of a word**
|