File size: 3,660 Bytes
f45a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: diffusers
pipeline_tag: text-to-image
---

## Model Details

### Model Description

This model is fine-tuned from [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on 110,000 image-text pairs from the MIMIC dataset using the Norm-tuning PEFT method. Under this fine-tuning strategy, fine-tune only the normalization weightsin the U-Net while keeping everything else frozen. 

- **Developed by:** [Raman Dutt](https://twitter.com/RamanDutt4)
- **Shared by:** [Raman Dutt](https://twitter.com/RamanDutt4)
- **Model type:** [Stable Diffusion fine-tuned using Parameter-Efficient Fine-Tuning]
- **Finetuned from model:** [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)

### Model Sources


- **Paper:** [Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity](https://arxiv.org/abs/2305.08252)
- **Demo:** [MIMIC-SD-PEFT-Demo](https://huggingface.co/spaces/raman07/MIMIC-SD-Demo-Memory-Optimized?logs=container)

## Direct Use

This model can be directly used to generate realistic medical images from text prompts. 


## How to Get Started with the Model

```python
import os
from safetensors.torch import load_file
from diffusers.pipelines import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(sd_folder_path, revision="fp16")
exp_path = os.path.join('unet', 'diffusion_pytorch_model.safetensors')
state_dict = load_file(exp_path)

# Load the adapted U-Net
pipe.unet.load_state_dict(state_dict, strict=False)
pipe.to('cuda:0')

# Generate images with text prompts

TEXT_PROMPT = "No acute cardiopulmonary abnormality."
GUIDANCE_SCALE = 4
INFERENCE_STEPS = 75

result_image = pipe(
        prompt=TEXT_PROMPT,
        height=224,
        width=224,
        guidance_scale=GUIDANCE_SCALE,
        num_inference_steps=INFERENCE_STEPS,
    )

result_pil_image = result_image["images"][0]
```


## Training Details

### Training Data

This model has been fine-tuned on 110K image-text pairs from the MIMIC dataset. 

### Training Procedure

The training procedure has been described in detail in Section 4.3 of this [paper](https://arxiv.org/abs/2305.08252).

#### Metrics

This model has been evaluated using the Fréchet inception distance (FID) Score on MIMIC dataset.

### Results

| Fine-Tuning Strategy   | FID Score |
|------------------------|-----------|
| Full FT                | 58.74     |
| Attention              | 52.41     |
| Bias                   | 20.81     |
| Norm                   | 29.84     |
| Bias+Norm+Attention    | 35.93     |
| LoRA                   | 439.65    |
| SV-Diff                | 23.59     |
| DiffFit                | 42.50     |


## Environmental Impact

Using Parameter-Efficient Fine-Tuning potentially causes **lesser** harm to the environment since we fine-tune a significantly lesser number of parameters in a model. This results in much lesser computing and hardware requirements.

## Citation


**BibTeX:**

@article{dutt2023parameter,
  title={Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity},
  author={Dutt, Raman and Ericsson, Linus and Sanchez, Pedro and Tsaftaris, Sotirios A and Hospedales, Timothy},
  journal={arXiv preprint arXiv:2305.08252},
  year={2023}
}

**APA:**  
Dutt, R., Ericsson, L., Sanchez, P., Tsaftaris, S. A., & Hospedales, T. (2023). Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity. arXiv preprint arXiv:2305.08252.

## Model Card Authors

Raman Dutt  
[Twitter](https://twitter.com/RamanDutt4)  
[LinkedIn](https://www.linkedin.com/in/raman-dutt/)  
[Email](mailto:[email protected])