File size: 973 Bytes
748ac9b 2127d3e 748ac9b 68c125e 748ac9b 6ff7322 748ac9b 68c125e 748ac9b 2127d3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
language:
- en
tags:
- text-to-sql
- gpt2
- gpt2-medium
- nlp-to-sql
- text2sql
- sql
datasets:
- b-mc2/sql-create-context
---
# Model Card
<!-- The base model used for training is gpt2-medium. We finetuned it on the following dataset: b-mc2/sql-create-context -->
This is my first fine tuned LLM project.
## Prompt
query = List the creation year, name and budget of each department
f"Translate the following English question to SQL: {query}
## Output
SELECT creation_year, name, budget FROM department
#### Training Hyperparameters
num_train_epochs=1
per_device_train_batch_size=3
gradient_accumulation_steps=9
learning_rate=5e-5
weight_decay=0.01
## Evaluation
| Step | Training Loss |
| -------- | ------- |
| 500 | 0.337800 |
| 1000 | 0.262900 |
| 1500 | 0.253200 |
| 2000 | 0.246400 |
{'eval_loss': 0.23689331114292145, 'eval_runtime': 104.4102, 'eval_samples_per_second': 67.043, 'eval_steps_per_second': 8.38, 'epoch': 1.0} |